首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the classical dual-loop voltage control scheme for an AC/DC converter, this paper proposes a simple stabilizing inner-loop model predictive controller (MPC) to regulate the output current and q-frame current to their references. The proposed MPC minimizes a cost function of the tracking error without any use of numerical methods using the specific property of the input matrix of the converter. It is shown that this MPC globally stabilizes the converter in the presence of input constraints. As the same manner of the classical dual-loop control scheme, PI controllers are adopted in the outerloop to regulate the output voltage while maintaining the maximum power factor. The simulation results show that the proposed inner-loop MPC considerably enhances the closed-loop performance despite the load changes.  相似文献   

2.
This paper presents a cascade output voltage control law adopting the self-tuning adaptive inner and outer-loop controllers for a AC/DC converter modelled as a nonlinear system. The first contribution is to design the inner and outer-loop controllers updating their control gains to enhance the closed-loop performance, estimating unknown parameters. The second one is to show that the proposed inner-loop controller stabilizes not only current error dynamics but also output voltage dynamics viewed as internal dynamics. The effectiveness of proposed method is shown by performing experiments using a 3-kW AC/DC converter.  相似文献   

3.
This paper describes a new controller design procedure and tuning method for a PWM buck dc‐dc converter. First, linear optimal feedback is designed using the LQR approach. Then the designed control law is implemented using a PID controller incorporated with a load‐decoupled PD compensator. The PID controller is tuned to achieve the optimal design based on the output error voltage directly, instead of using an estimator. When the proposed PD compensator is used, the converter is robust with respect to the input voltage and output current changes and the parameter perturbations. We also provide the conditions for the robust stability assurance of the closed‐loop system.  相似文献   

4.
In this paper, the integrated kinematic and dynamic trajectory tracking control problem of wheeled mobile robots (WMRs) is addressed. An adaptive robust tracking controller for WMRs is proposed to cope with both parametric and nonparametric uncertainties in the robot model. At first, an adaptive nonlinear control law is designed based on input–output feedback linearization technique to get asymptotically exact cancellation of the parametric uncertainty in the WMR parameters. The designed adaptive feedback linearizing controller is modified by two methods to increase the robustness of the controller: (1) a leakage modification is applied to modify the integral action of the adaptation law and (2) the second modification is an adaptive robust controller, which is included to the linear control law in the outer loop of the adaptive feedback linearizing controller. The adaptive robust controller is designed such that it estimates the unknown constants of an upper bounding function of the uncertainty due to friction, disturbances and unmodeled dynamics. Finally, the proposed controller is developed for a type (2, 0) WMR and simulations are carried out to illustrate the robustness and tracking performance of the controller.  相似文献   

5.

This paper proposes a methodology for single-phase power factor correction with DC–DC single-ended primary inductance converter (SEPIC) using cascade control strategy which comprises of genetic algorithm-based outer PI controller and an inner current controller which uses an adaptive neuro-fuzzy inference system-based sliding mode controller. DC–DC SEPIC is a fourth-order converter, and in order to reduce the complexity in controller design, reduced-order model of the original higher-order system is obtained by using Type-I Hankel matrix method. The performance of the proposed system is analysed using MATLAB/Simulink-based simulation studies. In order to ensure the robustness of the proposed controller, the performance parameters such as percentage total harmonic distortion, power factor, % voltage regulation, and % efficiency are analysed. From the simulation results, it is inferred that the proposed method provides efficient tracking of output voltage and effective source current shaping for load, line, and set point variations.

  相似文献   

6.
This paper deals with the problem of controlling energy generation systems including fuel cells (FCs) and interleaved boost power converters. The proposed nonlinear adaptive controller is designed using sliding mode control (SMC) technique based on the system nonlinear model. The latter accounts for the boost converter large-signal dynamics as well as for the fuel-cell nonlinear characteristics. The adaptive nonlinear controller involves online estimation of the DC bus impedance ‘seen’ by the converter. The control objective is threefold: (i) asymptotic stability of the closed loop system, (ii) output voltage regulation under bus impedance uncertainties and (iii) equal current sharing between modules. It is formally shown, using theoretical analysis and simulations, that the developed adaptive controller actually meets its control objectives.  相似文献   

7.
In this paper, we present an adaptive partial state-feedback repetitive learning control algorithm for a rigid-link electrically-driven (RLED) robot manipulator actuated by brushed DC (BDC) motors. The proposed controller is designed to compensate for repeatable mechanical uncertainty via a learning control term while an adaptive control loop is used to compensate for parametric uncertainty in the electrical dynamics. The proposed controller guarantees semi-global asymptotic link position tracking while only requiring measurements of link position and electrical winding current (e.g. measurements of link velocity are not required).  相似文献   

8.
This paper presents a comparison study of different control schemes for grid‐connected three phase two‐level power converters. All control strategies adopt the double‐loop control structure which consists of voltage regulation loop and instantaneous power tracking loop. In the external loop, voltage regulation loop, PI, fuzzy PI, adaptive controllers and PI controller plus extended state observer (ESO) are utilized to regulate the output voltage. The merits, drawbacks and design procedures of four methods are compared, investigated and analyzed. The second order sliding mode (SOSM) controllers are applied into the internal loop, instantaneous power tracking loop, to drive the active power and reactive power tracking their set points. The performance differences of these control strategies are compared through the real simulation.  相似文献   

9.
This paper presents a theoretical framework for adaptive control of a wind energy conversion system (WECS), involving a squirrel cage induction generator (SIG) connected with an AC/DC/AC IGBT‐based PWM converter. A multi‐loop nonlinear controller is designed to meet two main control objectives, i.e., (i) speed reference optimization in order to extract a maximum wind energy whatever the wind speed, and (ii) power factor correction (PFC) to avoid net harmonic pollution. These objectives must be achieved despite the mechanical parameters uncertainty. First, a nonlinear model of the whole controlled system is developed within the Park coordinates. Then, a multi‐loop nonlinear controller is synthesized using the adaptive backstepping design. A formal analysis based on Lyapunov stability is carried out to describe the control system performances. In addition to closed‐loop global asymptotic stability, it is proven that all control objectives (induction generator speed tracking, rotor flux regulation, DC link voltage regulation and unitary power factor) are asymptotically achieved.  相似文献   

10.
针对Buck型DC-DC变换器输出电压跟踪控制问题,提出了一种基于事件触发机制的有限时间控制方案。首先,将Buck变换器建模成一类反馈型非线性系统。然后,为能有效地避免通信资源的浪费,通过构造一种状态变换设计了一种事件触发机制;同时,利用反步法,设计了系统的状态反馈控制器,该控制器在事件触发时刻更新;然后,基于所设计的事件触发控制器,利用有限时间Lyapunov稳定性理论分析了系统的稳定性,并证明了所设计的控制方案不会发生Zeno现象;最后,通过Buck变换器仿真实例验证了所提出的事件触发控制方案的有效性,仿真结果表明了在所设计的控制方案下,Buck型DC-DC变换器的输出在有限时间内可以达到期望值,同时还能减少通信资源的浪费。  相似文献   

11.
In this paper, a new observer‐based controller is proposed for a photovoltaic DC – DC buck converter; both photovoltaic (PV) voltage and current regulation are considered. In order to deal with the complex and nonlinear PV mathematical model and adapt it to the control purpose, a hybrid PV current observer model is proposed; three modes are defined and the stability of the observer is discussed using the hybrid dynamical system approach (HDS). The observer‐based controller is designed for both voltage and current regulation of the PV system; the closed loop of the full system stability is demonstrated through Lyapunov analysis. Experimental results are also presented showing the feasibility of the proposed observer‐based controller.  相似文献   

12.
谷宇  张东来 《测控技术》2016,35(2):74-78
提出一种基于双闭环控制和重复控制的推挽变换器设计方法.针对车载蓄电池的输出电流纹波精度要求,通过理论分析对推挽变换器进行建模,并优化设计了推挽变换器平均电压外环电流内环的双闭环控制器参数;同时根据车载逆变器的应用环境,采用一种重复控制策略有效抑制电压误差中的交流分量,简化了控制器的设计.通过实际试验数据,验证了所设计的控制器的可行性和优越性.  相似文献   

13.
Buck型变换器自适应有限时间降压控制算法研究   总被引:2,自引:0,他引:2  
针对负载未知情况下Buck型DC-DC变换器系统, 基于有限时间控制技术和自适应控制技术, 提出了一种新的快速降压控制算法.首先, 基于时间尺度变换, 对系统的平均状态空间方程进行变换; 然后, 利用饱和有限时间控制理论设计出一类新的快速降压控制算法, 以实现输出电压在有限时间内收敛到参考电压.由于控制器设计过程中考虑了饱和约束条件, 使得变换器的占空比函数满足0到1之间的约束条件.对于负载未知情况, 设计了有限时间观测器以估计未知负载, 最终得到自适应式的有限时间控制算法.与PI控制结果进行了仿真对比, 验证了所提出的控制算法既具有快速的调节性能, 又具有较强的抗负载变化性能.  相似文献   

14.
The problem of regulating the output voltage of DC-to-DC series resonant converters (SRC) is addressed. The difficulty is threefold: (i) the converter model involves discontinuous and highly nonlinear terms and is controlled through a modulating frequency signal; (ii) all state variables are not accessible to measurements; (iii) the load is uncertain and may even be varying. An adaptive output feedback controller, involving online state variable estimation, is designed and shown to ensure quite satisfactory tracking performances. The controller development is performed using the adaptive backstepping control approach combined with the high-gain observer design technique.  相似文献   

15.
The output voltage regulation problem of a DC‐DC buck converter is investigated in this paper via an observer‐based finite‐time output‐feedback control approach. Considering the effects of unknown load variations and the case without current sensor, by using the technique of adding a power integrator and the idea of nonseparation principle, a finite‐time voltage regulation control algorithm via dynamic output feedback is designed. The main feature of the designed observer and controller does not need any load's information. Theoretically, it is proven that the output voltage can reach the desired voltage in a finite time under the proposed controller. The effectiveness of the proposed control method is illustrated by numerical simulations and experimental results.  相似文献   

16.
Dynamical adaptive regulation of pulse-width-modulation (PWM) controlled power supplies is proposed using a suitable combination of average dynamical input–output linearization and the ‘backstepping’ controller design method. Nonlinear average models of dc to dc power supplies are not transformable to parametric pure nor parametric strict feedback canonical forms by means of parameter-independent state co-ordinate transformation. A more direct approach is therefore proposed for implementing the fundamental ideas related to the so called ‘non-overparametrized’ adaptive backstepping algorithm which avoids explicit transformations to the above mentioned canonical forms. Dynamical adaptive feedback controllers are developed for the regulation of the input-inductor current towards desirable constant values. The validity of the proposed approach, regarding control objectives and robustness with respect to unmodelled, yet unmatched, and bounded stochastic perturbation inputs, is tested through digital computer simulations. © 1997 by John Wiley & Sons, Ltd.  相似文献   

17.
针对电压源逆变器系统中负载扰动和参数摄动, 本文提出了一种基于时变增益扩张状态观测器的自适应 super-twisting鲁棒电压控制新方法. 首先考虑负载扰动, 建立单相逆变器系统的动态模型, 进而考虑系统参数摄动, 通过引入非测量辅助状态变量, 将上述动态模型转化为只包含匹配扰动的状态方程; 其次, 设计时变增益扩张状态 观测器, 以实现对非测量辅助状态变量与包含负载变化和参数摄动等因素在内的集总不确定项的估计; 最后, 基于 此扩张状态观测器, 设计采用自适应super-twisting算法的滑模控制律, 以实现逆变器系统输出电压对其参考电压的 快速准确跟踪并增强系统鲁棒性. 仿真实验结果表明: 所提出的时变增益扩张状态观测器可在保证观测误差收敛 的同时, 有效抑制“初始微分峰值”现象; 采用自适应super-twisting算法的滑模控制策略可使逆变器系统输出电压 具有较高跟踪精度和较小总谐波失真率, 增强系统的抗干扰能力, 并降低控制输入信号“抖振”.  相似文献   

18.
指数稳定的机器人鲁棒跟踪控制   总被引:2,自引:0,他引:2  
代颖  郑南宁 《机器人》1997,19(3):161-165,172
本文提出了一种用于控制具有参数不确性机器人轨迹踊跃的鲁棒控制策略,该控制器的设计根据Lyapunov理论,由一个基于Slotine方法的标称控制器和一个非线性连续反馈补偿器组成。  相似文献   

19.
There is an increasing trend to employ advanced instrumentation and control strategies for batch processes where expensive products are being manufactured. In this paper, a robust nonlinear control strategy is developed for temperature tracking problems in batch reactors in the presence of parametric uncertainty. The controller has a multi-loop feedback configuration. An inner loop is designed for approximate input–output linearization of a nominal plant. The outer loop is designed for stability and robust performance by utilizing results from structured singular values (μ-synthesis). It is shown via simulation of a temperature tracking problem in batch synthesis that the controller provides excellent tracking despite parametric uncertainty.  相似文献   

20.
一类不确定非线性系统的鲁棒自适应控制   总被引:1,自引:1,他引:0  
针对一类MIMO不确定非线性系统的输出跟踪问题, 基于自适应反步法和滑模控制为其设计了鲁棒自适应控制器. 模型包含3种不确定性: 1) 参数不确定性; 2) 输入增益的不确定性; 3) 代表系统未建模动态和干扰的不确定函数, 该函数有界. 以非完整移动机械臂的输出跟踪控制为目标, 对其进行仿真实验, 实验结果表明所提出的控制算法是正确有效的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号