首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
提出了一种新型共面波导馈电的小型双频宽频带天线。天线由一环形单极子和一矩形贴片组合而成,矩形贴片嵌在环形单极子内部,使得天线结构紧凑。天线分别由矩形贴片和环形单极子辐射产生高低两个工作频段,实测高低频段带宽可覆盖无线局域网络(WLAN)和微波存取全球互通(WiMAX)全部通信频段。同时,天线在各工作频段内具有良好的全向辐射特性。实测和仿真的结果基本吻合,从而验证了这种设计方法的有效性。  相似文献   

2.
提出了一种适用于WLAN/WiMAX的小型化双频微带天线。在矩形辐射贴片表面加载2/5形缝隙,改变矩形辐射贴片表面电流路径,使电流有效路径增加,实现天线的双频特性。通过电磁仿真软件HFSS 15.0对天线模型进行仿真分析。结果表明,天线可同时工作于WiMAX2.60 GHz和WLAN5.15 GHz频段,低频段和高频段的相对带宽分别为4%(2.53~2.64 GHz)和6%(5.14~5.48 GHz),最大增益分别为4.47 dB和1.35 dB,能够满足WLAN和Wi MAX的通信需求。天线整体辐射性能良好、结构简单、容易集成于前端电路。  相似文献   

3.
一种应用于WLAN/WiMAX的新颖的三分枝单极天线   总被引:1,自引:0,他引:1  
提出了一种应用于WLAN/WiMAX的新颖的多分枝单极天线,天线有三个分枝,结构紧凑,其大小为26mm×24mm×1.6mm,加工出了天线并进行测试,测试结果表明天线具有良好的双波段工作特性,|S11|≤-10dB时对应中心频率2.47GHz和4.825GHz处带宽分别达4%和62.4%,覆盖WLAN的2.4/5.2/5.8GHz频段及WiMAX的3.5/5.5GHz频段,同时采用了接地板开槽技术以调整带宽,天线在上述频段有近似于全向辐射方向图。  相似文献   

4.
A new design of reconfigurable single-feed circular patch microstrip antenna for dual-band circular polarization application is proposed. The dual-band functionality is realized through incorporating cross-slots of equal slot length in the circular patch and utilizing two PIN diodes to switch the slots on or off. A pairs of tuning stubs are used to tune the circular polarization performance. The design process is presented and good results were obtained.  相似文献   

5.
In this paper, a compact asymmetric coplanar waveguide (CPW) feed with split-ring resonator (SRR) is proposed to resonate at dual-band operations for wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) applications. The asymmetric CPW-fed SRR patch (ACSP) antenna consists of a meander line, square-shaped split ring, and CPW ground plane. The proposed ACSP antenna resonates at two operating frequencies, namely, 2.48 GHz (2.4–2.74 GHz) and 3.49 GHz (3.25–3.64 GHz) with reflection coefficients (S11) of −16.65 dB and −32.67 dB, respectively. The measured results agree closely with the simulation results of the proposed antenna.  相似文献   

6.
应用于WLAN/WiMAX的双1型双频微带天线设计   总被引:1,自引:1,他引:0  
设计了一种同轴馈电的双1型缝隙结构的双频微带贴片天线。采用加载缝隙的方法改变圆形贴片表面电流路径来实现天线的双频带工作,利用电磁仿真软件HFSS 14.0对天线特性进行仿真,通过分析缝隙宽度和长度对天线辐射特性的影响,获得了最佳结构参数。结果表明,当回波损耗小于–10 d B,天线工作于2.57~2.63 GHz和5.78~5.84 GHz,且相对带宽分别达到2.3%和1.0%,天线的整体辐射特性良好,且结构简单,易于实现,可应用在微波存取全球互通(Wi MAX 2.6 GHz)和无线局域网络(WLAN 5.8 GHz)。  相似文献   

7.
This paper presents a fractal-based compact new monopole antenna for wideband applications. The miniaturization has been achieved by incorporating Minkowski and Koch-snowflake fractals. The proposed antenna design is etched on top of Rogers RT/5880 dielectric material with a dimension of 8 . 10 × 8 . 10 mm2. The antenna is designed, analyzed, fabricated, and tested in the laboratory. The proposed geometry operates over a 8.62–22.40 GHz with fractional bandwidth (FBW) of 88.84% and VSWR is less than 2. The proposed monopole antenna exhibits nearly omnidirectional radiation patterns over the entire resonating band with a gain of 1–2.91 dBi and a radiation efficiency of more than 60.5%. Also, the measured results of the prototype make an excellent agreement with the simulated counterpart. Further, the antenna gives good time-domain characteristics. Therefore, the proposed miniaturized antenna can be used in X/Ku/K-band applications.  相似文献   

8.
This article presents a small, low-profile planar microstrip antenna that is applicable for both WLAN and WiMAX applications. The goal of this paper is to design an antenna which can excite triple-band operation with appreciable impedance bandwidth to combine WLAN/WiMAX communication specifications simultaneously in one device. The designed antenna has a compact size of 10 × 26 mm2. The proposed antenna consists of an inverted U-shaped slot radiator and a defected ground plane. Overall the design method and parametric study found appropriate dimensions, which provides three distinct bands I from 2.40 to 2.52, II from 3.40 to 3.60 and III from 5.00 to 6.00 GHz that covers entire WLAN (2.4/5.2/5.8 GHz) and WiMAX (2.5/3.5/5.5) bands. Finally, a prototype antenna was fabricated and experimentally characterized to verify the design concept as well as to validate the simulation results. Thus the simulation results along with the measurements show that the antenna can simultaneously operate over WLAN and WiMAX frequency bands.  相似文献   

9.
In this paper, we present a novel narrow-frame antenna with a size of 75 × 8 × 5.8 mm3 for 5.7 in. mobile phones. The antenna mainly consists of a monopole with four branches that are coupled to a two-branch grounded strip. Our antenna is able to cover more bands than other narrow-frame antennas by excitation of several resonant modes. The improved range of the antenna covers the following eleven bands: LTE700, GSM850, GSM900, DCS, PCS, UMTS, LTE2300, LTE2500, LTE3400 (3400–3800 MHz)/WiMAX3.5 GHz (3400–3650 MHz), WLAN5.2 GHz (5150–5350 MHz) and WLAN5.8 GHz (5725–5875 MHz). Another advantage of the proposed antenna is that it does not need any lumped element to match the antenna. The working principles of the proposed antenna are thoroughly studied. A prototype of the proposed antenna is fabricated and measured, with the results in good agreement with the simulation results.  相似文献   

10.
A wideband on-chip millimeter-wave patch antenna in 0.18 μm CMOS with a low-resistivity (10 Ω.cm) silicon substrate is presented. The wideband is achieved by reducing the Q factor and exciting the high-order radiation modes with size optimization. The antenna uses an on-chip top layer metal as the patch and a probe station as the ground plane. The on-chip ground plane is connected to the probe station using the inner connection structure of the probe station for better performance. The simulated S11 is less than -10 dB over 46-95 GHz, which is well matched with the measured results over the available 40-67 GHz frequency range from our measurement equipment. A maximum gain of-5.55 dBi with 4% radiation efficiency at a 60 GHz point is also achieved based on Ansofi HFSS simulation. Compared with the current state-of-the-art devices, the presented antenna achieves a wider bandwidth and could be used in wideband millimeter-wave communication and image applications.  相似文献   

11.
用于非金属外壳设备的常规天线与金属外壳设备一起使用,会导致完全不同的回波损耗。因此,提出了一种同时适用于金属外壳和非金属外壳设备的四频段平面单极天线,该天线由一个弯曲接地层、一对寄生贴片和由同轴馈电激发的辐射片组成。提出的天线能够在不同类型接地层影响下,保持其谐振频率一致性,甚至能够连接到金属外壳上。该天线适用于在WLAN 2.4/5.2/5.8 GHz、WiMAX 3.5/5.5 GHz和4.5GHz工作的多种应用。仿真和实际测量结果显示,即便是连接到较大的金属外壳或金属板时,提出天线能够较好地保持回波损耗和增益一致性且符合行业标准。  相似文献   

12.
提出了一种具有新颖缺陷地结构的多频段新型平面天线,该天线采用微带馈电方式进行馈电,改进的接地板通过延伸两段倒T字形枝节,得到了蓝牙、TD-LTE和X波段卫星通信频段;Wi MAX通信频段则通过左右对称的倒钩形结构辐射贴片获得。该天线实际测量带宽为2.42~2.78 GHz、3.02~3.62 GHz和7.25~7.88 GHz,能完整覆盖蓝牙、TD-LTE、Wi MAX和X波段卫星通信下行频段,尺寸为20 mm×30 mm。天线结构简单、尺寸小及全向性辐射特性表明该天线能很好地满足便携式多频段移动设备的需求。  相似文献   

13.
双频段印刷天线在移动通信中有着广泛的应用.本文提出了一种新型的GSM900/DCS1800双频段单层贴片天线,用传输线模型对该天线进行了理论分析、用Ensemble 8.0软件进行了仿真、并用Optimetrics 2.0软件进行了优化,实验结果和计算机仿真结果有着很好的一致性.  相似文献   

14.
A dual-band slotted patch antenna with thin dielectric has been proposed for Ku–band applications. A rectangular patch with pair of bent slots at each side of center has been designed and resonant at 11.95 GHz and 14.25 GHz with respect to ITU standard. A dual resonance ultrathin metamaterial absorber (MMA) based on circular rings and shorted stubs operating at same frequency bands have been designed. Its behavior at an oblique angle of incidence and polarization sensitivity has been also observed. In this research work, it has been obtained that when dual–band slotted patch antenna is surrounded by proposed MMA structure, it significantly enhances in-band stealth capability of the antenna. The monostatic and bistatic RCS of the proposed design has been reduced significantly whilst maintaining and preserving the antenna radiation performance. This design finds its application in satellite and wireless communication.  相似文献   

15.
应用于WLAN/WiMAX的三频单极子天线设计   总被引:5,自引:1,他引:5  
设计了一种三频段L型单极子平面天线,通过3个L型单极子天线的组合,使其中一个单极子天线工作于3.5 GHz频段,较长一个单极子工作于2.4 GHz频段,较短一个单极子工作于5.8 GHz频段,该天线与其他三频段平面天线相比,结构更为简单。为数值分析和优化,在HFSS建立了该天线的电磁仿真模型,仿真结果表明,该三频段天线在其3个工作频段内的回波损耗都<-10 dB,实现了2.4 GHz,3.5 GHz和5.8 GHz 三频段同时工作。该天线可在WLAN和WiMAX通信系统中得到良好的应用。  相似文献   

16.
Microstrip antennas suffer an inherent disadvantage of narrow impedance bandwidth, normally within 5%. In this article, a single layer linear U-slot microstrip patch antenna array is designed, fabricated and characterised. The measured results agree well with the simulated, showing an enhanced impedance bandwidth (voltage standing wave ratio < 2) of 10.6%, ranging from 5.35 to 5.95 GHz, on an FR4 substrate. The antenna array has high efficiency and gain. Only a pair of sidelobes appear in the E plane radiation pattern. The reported linear array design can provide a method of expanding to 4 × N antenna array for satellite to ground communication operating at C band.  相似文献   

17.
马世伟  乔龙  丁旭 《电子科技》2014,27(9):115-117
设计了一种应用在无线局域网络(WLAN 2.4 GHz)和微波存取全球互通(WiMAX 3.5 GHz/1.8 GHz)无线通信领域中的小型化三频段微带贴片天线。结构设计主要通过在圆形贴片上开出一个近似T形槽的方式,该天线结构简单、尺寸小、加工方便、成本低且全向特性理想。为了便于数值分析和优化,在HFSS建立了该天线的电磁仿真模型。其研究表明,实测和仿真的结果吻合良好,该天线在其各频段内的回波损耗<-10 dB,并具有良好的方向性和增益。在3个工作频带内电压驻波<2,阻抗匹配特性良好,验证了该设计的合理性。  相似文献   

18.
提出了一种新的小型化、宽频带的多频微带天线该天线具备三个不同的工作频段,可同时工作在蓝牙、无线射频识别(Radio Frequency Identification Devices,RFID)、无线局域网(Wireless Local Area Network,WLAN)和全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMAX)的通信频段上.该微带天线主要由四个半圆环、一个圆环、一个矩形带以及缺陷地组成.为了获得结构的小型化,通过在四个半圆环中增加一个圆环来激发出该天线的两个谐振频率,通过改进地板为带圆形缺陷的拱结构来获得第三个阻抗匹配良好的频段.实测结果显示:该天线在工作频段具有很好的辐射特性和增益.  相似文献   

19.
设计了一种满足WLAN和WiMAX工作所需的小型共面波导馈电的三频带印刷单极子天线单元。该单极子天线的设计采用了在倒锥形单极天线表面开缝和在底层加载枝节的结构,使其获得了小型化和三频带的性能。采用基于共面波导的馈电方式,使天线单元具备宽带匹配、结构简单、制作方便和易与其它无线通信设备集成等优点。仿真和实测结果表明,设计的天线单元在WLAN和WiAMX应用的频段上10dB阻抗带宽分别约为610MHz(2.10~2.71GHz,约25.4%),310MHz(3.48~3.79GHz,约8.9%)和360MHz(4.96~5.32GHz,约7%),增益也都在2dB以上,而且在相应工作频点上辐射方向图全向性较好。该天线能满足WLAN和WiMAX的应用所需,具有较高的工程应用价值。  相似文献   

20.
A planar-printed dual-wideband U-shaped magneto-electric dipole omnidirectional antenna with a composite feeding structure for WWAN/LTE applications is proposed. Firstly, a U-shaped electric dipole structure is presented to provide a dual-wideband by changing the surface-current distributions. In addition, in order to reduce antenna size and improve impedance matching, a new feeding structure designed with inverted U-shaped tapered line and meandering T-shaped line is introduced. Finally, instead of a conventional vertical ground plane, a small-size one is printed on the reverse side of the substrate to achieve stable gains and omnidirectional radiation patterns. The antenna prototype can attain a bandwidth of 35.8% (0.78–1.12 GHz) with a stable gain of 3 ± 0.5 dBi for the lower band, and a bandwidth of 50.5% (1.66–2.78 GHz) with a gain of 3.8 ± 0.6 dBi for the upper band, covering the frequency bands granted for WWAN/LTE systems. To the best of our knowledge, it is the first real-sense planar magneto-electric dipole antenna proposed. In comparison with the existing ME dipole antennas, the proposed antenna, which is planar-printed on a small-size FR4 substrate with a simple structure, can be easily fabricated at low cost and thus is promising for WWAN/LTE communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号