首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The 4.4 kb SphI DNA fragment (GSH1) that complements the gamma-glutamylcysteine synthetase-deficient mutation (gsh1) of Saccharomyces cerevisiae YH1 was cloned into vector plasmid YEp24. Gene disruption of the cloned fragment confirmed that this segment was the same gene as gsh1. Mutant strain YH1 with this plasmid not only restored gamma-glutamylcysteine synthetase (GSH-I) activity but the glutathione content and the growth rate. DNA sequence analysis of the SphI fragment showed that the GSH1 structural gene contained 2034 bp and predicted a polypeptide of 678 amino acids. The deduced amino acid sequence had about a 45% homology to that of rat kidney GSH-I, but a very low homology (about 26%) to that of Escherichia coli GSH-I. Northern analysis showed that GSH1 had been transcribed into an approximately 2.7 kb mRNA fragment. Southern analysis showed that GSH1 mapped at chromosome X.  相似文献   

3.
The GAS multigene family of Saccharomyces cerevisiae is constituted by five genes (GAS1-GAS5), but GAS1 was the only one to have been characterized to date. Gas1 is a glycosylphosphatidylinositol-anchored protein predominantly localized in the plasma membrane and is also a representative of family GH72 of glycosidase/transglycosidases, a wide group of yeast and fungal enzymes involved in cell wall assembly. Gas1-Gas5 proteins share a common N-terminal domain but exhibit different C-terminal extensions, in which a domain named Cys-Box is located. This domain is similar to the carbohydrate binding module 43 and is present only in Gas1p and Gas2p. Here we report the expression in P. pastoris of soluble forms of Gas proteins. Gas1, 2, 4 and 5 proteins were secreted with a yield of about 30-40 mg/l of medium, whereas the yield for Gas3p was about three times lower. Gas proteins proved to be N-glycosylated. Purified Gas proteins were tested for enzymatic activity. Gas2, Gas4 and Gas5p showed a beta-(1,3)-glucanosyltransferase activity similar to Gas1p. A phylogenetic tree of the N-terminal regions of family GH72 members was constructed. Two subfamilies of N-terminal regions were distinguished: one subfamily, GH72(+), contains proteins that possess a Cys-box in the C-terminal region, whereas family GH72(-) comprises proteins that lack a Cys-box. On the basis of this net distinction, we speculate that the type of C-tail region imposed constraints to the evolution of the N-terminal portion.  相似文献   

4.
5.
Cdc24p and Cdc42p are involved in the control of cell polarity during the Saccharomyces cerevisiae cell cycle. Cdc42p is a member of the Ras superfamily of GTPases and Cdc24p displays limited amino-acid sequence similarity with the Dbl proto-oncoprotein, which acts to stimulate guanine-nucleotide exchange on human Cdc42p. We have performed several genetic experiments to test whether Cdc24p and Cdc42p interact within the cell. First, overexpression of Cdc24p suppressed the dominant-negative cdc42D118A allele. Second, overexpression of wild-type CDC24 and CDC42 genes together was a lethal event resulting in a morphological phenotype of large, round, unbudded cells, indicating a loss of cell polarity. Third, a cdc24ts cdc42ts double mutant exhibited a synthetic-lethal phenotype at the semi-permissive temperature of 30°C. These data suggest that Cdc24p and Cdc42p interact within the cell and that Cdc24p may be involved in the regulation of Cdc42p activity.  相似文献   

6.
Using a THI4-lacZ reporter gene, mutant strains have been isolated that display constitutive expression of thiamine genes in the presence of normally repressing levels of exogenous thiamine. In total, eight strains were isolated in which this derepressed expression on thiamine (Det(-)) phenotype was the result of single gene mutations. The Det(-) mutations of three of these strains were partially dominant in a heterozygous diploid configuration, whereas the other five were recessive. The partially dominant mutants DET1, DET12 and DET13, and the recessive mutant det2, all showed derepressed THI4-lacZ expression levels comparable to those of a fully induced normal strain. Use of other promoter-lacZ gene fusions revealed that these four mutants were pleiotropic; expression levels of all thiamine-regulated genes tested were also derepressed. Genetic analysis of the four mutants suggested that det2 and DET13 were allelic, whereas the others were at different loci; these four mutations therefore represent three different genes. None of the mutations were allelic with THI80, mutations of which have previously been shown to confer derepression on thiamine-regulated genes. Also, intracellular thiamine levels were close to normal and none of the four mutants excreted thiamine into the growth medium. All mutant strains were found to be prototrophic for thiamine and none of those tested were compromised for thiamine uptake. It is possible that some may be alleles of, or interact with, the activator gene THI3. Taken together, these results imply that DET1, det2, DET12 and DET13 represent new genes encoding negative regulators of thiamine-repressed genes.  相似文献   

7.
Sequence of the CDC10 region at chromosome III of Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
A 4.74 kb DNA fragment from the right arm of chromosome III of Saccharomyces cerevisiae, adjacent to the centromere region was sequenced. Four open reading frames with an ATG initiation codon and larger than 200 bp were found in this fragment. The largest open reading frame of 966 bp was identified as the CDC10 gene.  相似文献   

8.
Saccharomyces cerevisiae contains at least four PRS genes, all of which have been cloned and sequenced. Each of the four derived amino acid sequences have more than 60% similarity to the corresponding polypeptides of man, rat, Escherichia coli and Salmonella typhimurium. The PRS1 gene maps on chromosome XI, PRS2 on chromosome V, PRS3 on chromosome VIII and PRS4 on chromosome II. One member of this gene family, PRS1, contains a region of non-homology (NHR) shown by cDNA cloning and sequencing not to be an intron. The results presented here suggest that the presence of this NHR is not detrimental to the function of the gene. To date the possibility of protein splicing can be neither proven nor disputed. The sequences submitted to the EMBL data library are available under the following accession numbers: PRS1 (X70069), PRS2 (X74414) and PRS3 (X74415).  相似文献   

9.
The cell division cycle gene CDC15 is essential for the late nuclear division in the yeast Saccharomyces cerevisiae. The amino acid sequence of the 974 amino acids/110 kDa CDC15 gene product, as deduced from the nucleotide sequence, includes an aminoterminal protein kinase domain which contains a primary sequence mosaic showing patterns specific for protein serine/threonine kinases besides those for protein tyrosine kinases. Many protein kinases non-essential for growth are known. CDC15 represents an essential protein kinase like CDC7 and CDC28. A carboxyterminal deletion of 32 amino acids renders the protein inactive.  相似文献   

10.
A gene homologous to Saccharomyces cerevisiae MNN9 has been cloned and characterized in the methylotrophic yeast Hansenula polymorpha. This gene was cloned from a H. polymorpha genomic DNA library using the S. cerevisiae MNN9 gene as a probe. The H. polymorpha MNN9 homologue (HpMNN9) contained a 1062 bp open reading frame encoding a predicted protein of 354 amino acids. The deduced amino acid sequence showed 58% and 51% identity, respectively, with the S. cerevisiae and Candida albicans Mnn9 proteins. Disruption of HpMNN9 leads to phenotypic effects suggestive of cell wall defects, including detergent sensitivity and hygromycin B sensitivity. The hygromycin B sensitivity of S. cerevisiae mnn9 null mutant was complemented in the presence of the HpMNN9 gene. The DNA sequence of the H. polymorpha homologue has been submitted to GenBank with the Accession No. AF264786.  相似文献   

11.
A gene homologous to Saccharomyces cerevisiae PMR1 has been cloned in the methylotrophic yeast Hansenula polymorpha. The partial DNA fragment of the H. polymorpha homologue was initially obtained by a polymerase chain reaction and used to isolate the entire gene which encodes a protein of 918 amino acids. The putative gene product contains all ten of the conserved regions observed in P-type ATPases. The cloned gene product exhibits 60·3% amino acid identity to the S. cerevisiae PMR1 gene product and complemented the growth defect of a S. cerevisiae pmr1 null mutant in the EGTA-containing medium. The results demonstrate that the H. polymorpha gene encodes the functional homologue of the S. cerevisiae PMR1 gene product, a P-type Ca2+-ATPase. The DNA sequence of the H. polymorpha homologue has been submitted to GenBank with the Accession Number U92083. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
CDC3, CDC25 and CDC42 were localized to chromosome XII by hybridizing the cloned genes to Southern blots of chromosomes separated by orthogonal-field-alternation gel electrophoresis. Meiotic tetrad analyses further localized these genes to the region distal to the RDN1 locus on the right arm of the chromosome. The STE11 gene, which had previously been mapped to chromosome XII (Chaleff and Tatchell, 1985), was found to be tightly linked to ILV5. The data suggest a map order of CEN12-RDN1-CDC42-(CDC25-CDC3)-(ILV5- STE11)-URA4. Certain oddities of the data set raise the possibility that there may be constraints on the patterns of recombination in this region of chromosome XII.  相似文献   

13.
A dextranase-encoding cDNA from L. starkeyi KSM22 was isolated and characterized. The 2052 bp cDNA fragment (lsd1) harbouring the dextranase gene exhibited one open reading frame (ORF) composed of 1824 bp flanked by a 41 bp 5'-UTR and a 184 bp 3'-UTR, including a 27 bp poly(A) tail. The lsd1 gene contains no introns. The open reading frame encodes a 608 amino acid polypeptide (LSD1) with a 67.6 kDa predicted molecular mass. There was a 77% deduced amino acid sequence identity between the LSD1 dextranase and the dextranase from Penicillium minioluteum. The primary structure of LSD1 dextranase exhibits distant similarity with the enzymes of the glycosyl hydrolase family 49 that comprises Penicillium dextranase. The optimum pH of LSD1 was 6.0 and the optimum temperature was 37 degrees C. LSD1 dextranase activity was substantially abolished by exposure to 1 mM Hg2+, Ag3+ and Mn2+. LSD1 exhibited high hydrolysing activity towards dextran (100%), soluble starch (22%) and mutan (8%).  相似文献   

14.
15.
A prototroph revertant (Rev9) selected from an ATCase? mutant of the URA2 gene containing three nonsense mutations was shown to contain two ATCase coding sequences. We cloned both ATCase coding areas to show that the duplicated locus (dl9) was the only functional one. Its size corresponded roughly to the second half of the URA2 wild-type gene. Sequence analysis of the 5′ end of dl9 indicated that this duplicated sequence was inserted within the intergenic region close to the MRS3 gene and was transcribed from an unknown promoter divergently from the MRS3 gene. The event leading to the revertant strain Rev9 included a rearrangement that increased the size of chromosome X by about 60 kb. In agreement with such a rearrangement, recombination was undetectable in the vicinity of the locus dl9. Genetic mapping confirms that the MRS3 gene is 2 cM distal to the URA2 gene on the right arm of chromosome X.  相似文献   

16.
A temperature-sensitive mutation (act1-1) in the essential actin gene of Saccharomyces cerevisiae can be suppressed by mutations in the SAC3 gene. A DNA fragment containing the SAC3 gene was sequenced. SAC3 codes for a 150 kDa hydrophillic protein which does not show any significant similarities with other proteins in the databases. Sac3 therefore is a novel yeast protein. A nuclear localization of Sac3 is suggested by the presence of a putative nuclear localization signal in the Sac3 sequence. A SAC3 disruption mutation was constructed. SAC3 disruption mutants were viable but grew more slowly and were larger than wild-type cells. In contrast to the sac3-1 mutation, the SAC3 disruption was not able to suppress the temperature sensitivity and the osmosensitivity of the act1-1 mutant. This demonstrates that act1-1 suppression by sac3-1 is not the result of a simple loss of SAC3 function. Furthermore, we examined the act1-1 and the sac3 mutants for defects in polarized cell growth by FITC-Concanavalin A (Con A)-labelling. The sac3 mutants showed a normal ConA-labelling pattern. In the act1-1 mutant, however, upon shift to non-permissive temperature, newly synthesized cell wall material, instead of being directed towards the bud, was deposited at discrete spots in the mother cell.  相似文献   

17.
The CDC33 gene of Saccharomyces cerevisiae belongs to the class II 'START' genes. Its product is required for the initiation of a new cell division cycle (Hartwell, 1974). Many results suggest that the cAMP signalling pathway is one of the major controlling elements of 'START'. Components of this pathway are encoded by class II 'START' genes. The aim of the present study is to determine whether or not the CDC33 gene interferes with the cAMP signalling pathway. We report here the molecular cloning of the CDC33 gene by complementation of the cdc33-1 thermosensitive mutant. The identity of the cloned gene is confirmed by site-specific reintegration and segregation analysis. This gene is transcribed into a 900-nucleotides mRNA and appears to be relatively abundant in the cell. We also show that the CDC33 gene product is essential for sporulation. cdc33-1 mutant cells are able to enter into the resting state. The cAMP intracellular pool is not modified when the cdc33-1 mutant is shifted to the restrictive temperature. The cdc33-1 mutation is not suppressed by other known elements of the cAMP cascade. All these results suggest that the CDC33 'START' gene does not interfere with the cAMP signalling pathway which controls cell division.  相似文献   

18.
Primary structure of the Saccharomyces cerevisiae GAL7 gene   总被引:12,自引:0,他引:12  
  相似文献   

19.
20.
A mutant library generated by the European Functional Analysis Network (EUROFAN) was screened for strains defective in fluid-phase endocytosis. Accumulation of Lucifer yellow in the vacuole was used as a marker for efficient endocytosis. Fourteen mutants, including ede1Delta, rcy1Delta, sys1Delta and tlg2Delta, previously described to be involved in membrane trafficking, were identified in this screen. alpha-Factor uptake, endocytosis of FM4-64, carboxypeptidase Y secretion, vacuolar morphology, and a vma2 synthetic growth defect were used as criteria to characterize the endocytic defect of the mutant strains obtained. Accordingly, eight mutant strains have endocytic phenotypes in addition to their defect in Lucifer yellow accumulation. These fluid-phase endocytosis mutants are defective at different steps of the endocytic pathway. Interestingly, only two mutants were defective for internalization, two for vacuolar protein sorting and four mutants had aberrant vacuolar morphologies. Some of the mutants identified in this screen that sort carboxypeptidase Y correctly may affect endocytosis at an early post-internalization step before the intersection of the endocytic with the vacuolar protein-sorting pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号