首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Tensile creep tests were combined with detailed transmission electron microscopy in order to characterize the dislocation movements during creep of the die-cast AM50 magnesium alloy. TEM observations indicate that dislocations are introduced within the primary α-Mg grain interior in the die-casting process, which consist of both the basal and non-basal segments. The non-basal segments of dislocations, having smoother curvature in as die-cast state, partially exhibit steps parallel to the basal plane during high temperature exposure. The basal segments of dislocations are able to bow out and glide on the basal planes under the influence of a stress, and the non-basal segments and/or jogs follow the basal segments with the help of climb during creep.  相似文献   

2.
The microstructure and compressive creep behaviors of as-cast and aging-treated Mg–5 wt% Sn alloys are investigated in this paper. The compressive creep resistance of aging-treated Mg–5 wt% Sn alloy is much better than that of as-cast alloy at the applied stresses from 25 MPa to 35 MPa and the temperatures from 423 K to 473 K, which is mainly due to the dispersive distribution of Mg2Sn phase in the aging-treated Mg–5 wt% Sn alloy. The calculated average values of stress exponent n and activation energy Qc suggest that dislocation cross slip and dislocation climb happen respectively in as-cast and aging-treated Mg–5 wt% Sn alloys during creep.  相似文献   

3.
A binary magnesium alloy, Mg–2 wt.%Nd, has been prepared. Under the condition of temperature between 150 and 250 °C and applied stress between 30 and 110 MPa, the alloy exhibits good creep resistance due to both solution-hardening and especially precipitation-hardening. Tiny precipitates forming dynamically during creep have been observed, which play an important role in restricting dislocation movements. When the creep tests are carried out at the temperature range between 150 and 250 °C, the stress exponents lie in the range of 4.5–7.1 at low stresses, which is consistent with the “five-power-law”. The values of stress exponent increase up to 9.8–29.5 at high stresses indicate power-law breakdown. When the creep tests are carried out under the applied stress between 30 and 90 MPa, the apparent activation energy values vary from 70.0 to 96.0 kJ/mol at low temperatures, but increase to 199.9–246.1 kJ/mol at high temperature range. Dislocations in basal plane are activated in the primary creep stage, but as creep goes on, they are observed in non-basal plane. The creep is mainly controlled by both dislocation-climb and cross-slip.  相似文献   

4.
The interaction of dislocation with strengthening particles, including primary and secondary γ′, during different stages of creep of Rene-80 was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). During creep of the alloy at 871 °C under stress of 290 MPa, the dislocation network was formed during the early stages of creep, and the dislocation glide and climb process were the predominant mechanism of deformation. The density of dislocation network became more populated during the later stages of the creep, and at the latest stage of the creep, primary particles shearing were observed alongside with the dislocation glide and climb. Shearing of γ′ particles in creep at 871 °C under stress of 475 MPa was commenced at the earlier creep times and governed the creep deformation mechanism. In two levels of examined stresses, as far as the creep deformation was controlled by glide and climb, creep curves were found to be at the second stage of creep and commence of the tertiary creep, with increasing creep rate, were found to be in coincidence with the particles shearing. Microstructure evolution, with regard to γ′ strengthening particles, led to particles growth and promoted activation of other deformation mechanisms such as dislocation bypassing by orowan loop formation. Dislocation-secondary γ′ particles interaction was detected to be the glide and climb at the early stages of creep, while at the later stages, the dislocation bypassed the secondary precipitation by means of orowan loops formation, as the secondary particle were grown and the mean inter-particle distance increased.  相似文献   

5.
The effect of initial temper on the tensile creep behavior of a cast Mg–Gd–Nd–Zr alloy has been investigated. Specimens in unaged, underaged and peak-aged conditions exhibit a sigmoidal creep stage between the primary and steady-state creep stage, while the overaged specimens have no such creep stage. Transmission electron microscope observations revealed that sigmoidal creep stage was induced by the dynamic precipitation in the microstructure, and the rapid formation of β1-phase and β-phase plates takes responsibility for the softening of material in this stage. Comparative evaluation of creep properties of the specimens showed that alloy in overaged condition had creep resistance superior to those in other conditions. Stress and temperature dependence of the steady-state creep rate were studied over a temperature range of 250–300 °C and stress range of 50–100 MPa, and a dislocation creep mechanism was proposed for the alloy.  相似文献   

6.
The tensile creep behaviour of the high-temperature near -Ti alloy Ti–5.8Al–4.0Sn–3.5Zr–0.7Nb–0.35Si–0.06C (Timetal 834) with a duplex microstructure has been extensively investigated in the temperature range from 500°C to 625°C and the stress range from 100 to 550 MPa. Both primary and secondary creep are being considered. The results of the primary creep are analysed in terms of the dependencies of stress on strain (strain hardening) and on strain rate (strain rate sensitivity). It is shown that the strain-hardening exponent depends on temperature, and takes values between 0.5 for 500°C and 0.33 for higher temperatures; this would give a dependence of the primary creep strain of σ2 and σ3. The strain rate exponents obtained in both primary and secondary creep have been found to be similar; this is also the case for the activation energies. It is thought that, in the stress and temperature range investigated, creep is controlled by bow-out and climb of dislocation segments pinned at lath boundaries and second-phase particle. Analysis of the dislocation substructure is presented to give some support for this mechanism.  相似文献   

7.
Constant-load indentation creep tests were performed on pure aluminum and aluminum 4 wt% copper at 300 K to assess the influence of indentation depth, copper addition, and heat treatment upon the indentation creep rate. The stress dependence of the average indentation creep rate could be expressed for all the samples tested in terms of a mechanism of obstacle-limited dislocation glide. The calculated activation energy showed the same dependence upon indentation stress for all the conditions investigated.We therefore conclude that the indentation creep rate is limited by dislocation/dislocation interactions regardless of indentation depth, copper addition, or heat treatment. The presence of 4 wt% copper and heat treatment, however changes, the dislocation density, and hence the spacing of the dislocation–dislocation interactions.  相似文献   

8.
Using experimental data and theoretical calculation for Newtonian creep in polycrystalline ice, it is demonstrated that unlike most other materials, in which the rate-controlling flow process is edge dislocation climb under saturated condition, the rate-controlling flow process of polycrystalline ice is dislocation glide along the basal plane under a constant dislocation density. The dislocation density during Newtonian creep of ice is determined by the initial state instead of the magnitude of the Peierls stress. The transition stress (threshold) from power-law creep to Newtonian creep is controlled by the dislocation density instead of the Peierls stress. The activation energy of the Newtonian creep is similar to that of the self-diffusion due to the requirements of the diffusion of protons during dislocation glide.  相似文献   

9.
It has been demonstrated that grain boundary sliding may contribute up to 50 percent of the total strain during experimental, high temperature deformation of Carrara Marble (Schmid, Paterson and Boland, 1980), yet the creep behavior was characterized by a high stress exponent and an apparent thermal dependence related to volume diffusion of carbon in calcite. By adopting the model of Gifkins (1976, 1977) for dislocation accommodated grain boundary sliding, incorporating Nabarro's model of creep by climbing edge dislocations (Weertman, 1975) and using the experimentally determined relationship between stress and subgrain (recrystallized grain) size, a model is developed which fits the high temperature creep data very well. In effect, the model assumes that deformation occurs by a combination of climb of edge dislocations and dislocation accommodated grain boundary sliding. It is shown that the model can be easily and reasonably extended to include creep by climb-controlled dislocation glide.  相似文献   

10.
The creep behaviour of Al-10 at% Zn at 573 K is divisible into three deformation regions; low stress region, intermediate stress region and high stress region. The creep characteristics of the low stress region and intermediate stress region are consistent with dislocation climb and viscous glide, respectively. In the high stress region, the stress exponent,n increases with stress, the activation energy is higher than those observed in the other two regions, the activation area is slightly decreasing with stress and the internal stress is almost negligible. Present analysis shows that these characteristics are consistent with the thermally-activated glide motion of dislocations as a rate controlling mechanism at high stresses.[/p]  相似文献   

11.
The creep and creep recovery of pre-aging Al–1 wt.%Si and Al–1 wt.%Si–0.1 wt.%Zr–0.1 wt.%Ti alloys have been investigated at room temperature under different constant stresses. The aging temperature dependence of steady creep rate, st, and the recovery strain rate, π, show that under the same test conditions first alloy yields creep or creep recovery rates much higher as compared with those of second alloy. The stress exponent n was found to change from 2.5 to 7.43 and 4.57 to 11.99 for two alloys, respectively, characterizing dislocation slipping mechanism. The activation energies of steady state creep of the two alloys were found to be 78.4 kJ/mol and 32.8 kJ/mol for Al–Si and Al–Si–Zr–Ti alloys, respectively. The microstructure of the samples studied was investigated by optical and transmission electron microscopy (TEM).  相似文献   

12.
Hot compressive behaviors of Ti–6Al–2Zr–1Mo–1V alloy at 1073 K, as well as the evolution of microstructure during deformation process, were investigated in this paper. The results shows that flow stress increases up to a peak stress, then decease with increasing strain, and forms a stable stage at last. The grain size also shows an decrease at first and increase after a minimum value. Dislocations are observed to produce at the interface of α/β phase, and the phase interface and dislocation circle play an important role in impeding the movement of dislocation. As strain increase, micro-deformation bands with high-density dislocation are founded, and dynamic recrystallization occurs.  相似文献   

13.
The Ni-base superalloy GTD-111 is used as a blading material in the first stage blades of high power gas turbines. The creep-rupture properties of the cast superalloy were studied over a wide range of temperatures and stresses. The observations of dislocation structures during steady-state creep confirmed that the creep mechanism was different in the high and low stress regions. The results showed that in the high stress region, shear mechanisms including stacking fault formation and anti-phase boundary creation were operative and in the low stress region, a by-passing mechanism occurred by either looping or dislocation climb and glide. With increasing exposure time in the high-temperature low-stress region, dislocations formed networks at γ–γ′ interfaces, as well as inside γ′ particles. The transition in the mode of dislocation–γ′ precipitate interaction from shearing to by-passing was found to depend on creep conditions (stress and temperature) and microstructural characteristic of the alloy. The present paper provides microstructural evidence by means of transmission electron microscopy for a high temperature by-passing mechanism operating in the superalloy GTD-111.  相似文献   

14.
15.
In the present exploration, it was attempted to understand the creep‐fatigue (CF) deformation micromechanisms of alloy CM 247 DS LC by conducting low‐cycle fatigue (LCF) and CF tests employing strain amplitude ranging from 0.6% to 1.0% at T = 850°C in the air and performing extensive electron microscopic examinations. The cyclic life of the alloy lessens for all CF tests conducted at 1 and 5 minute dwell time in comparison to LCF tests. Transmission electron microscopy (TEM) examinations confirmed that during CF tests substructure consists of dislocation loop, mixed dislocations, and γ' rafting, a typical creep deformation signature of nickel‐base superalloys, it also consists of features observed during fatigue deformation such as anti‐phase boundary (APB)‐coupled dislocations inside γ' precipitates and local tangles of dislocations. This confirms that the deformation of CF‐tested specimens is ascribed to the synergistic effect of both creep and fatigue. This fact was further verified by scanning electron microscopic (SEM) examinations.  相似文献   

16.
The effects of 0.5, 1.0 and 2.0 wt.% Y additions on the microstructure and creep behavior of the as-cast AZ80 alloy were investigated by impression tests. The tests were performed at temperatures in the range 423–523 K, under punching stress in the range 150–650 MPa. At low temperatures up to 473 K, the AZ80 + 0.5Y alloy had the highest creep resistance among all materials tested, whereas with increasing temperature from 473 K to 523 K, the AZ80 + 1.0Y alloy had a better performance. This can be attributed to the fact that at low temperatures the presences of β-Mg17Al12 and Al2Y phases together with solid solution hardening effects of Al in the Mg matrix strengthen the AZ80 + 0.5Y alloy. At higher temperatures, AZ80 + 1.0Y with a higher volume fraction of the more thermally stable Al2Y and lower amounts of the less stable β-Mg17Al12 exhibits better creep behavior. The stress exponents and activation energies were almost the same for all alloy systems studied, 6.0–8.8 and 90–119 kJ/mol, respectively. The observed decreasing trend of creep-activation energy with stress suggests that two parallel mechanisms of lattice and pipe-diffusion-controlled dislocation climb are competing. Climb of dislocations with an additional particle strengthening effect controlled by dislocation pipe diffusion is dominant at high stresses, whereas climb of dislocations is the controlling mechanism at low stresses.  相似文献   

17.
Creep behavior of a wrought Mg–3Al–1Zn (AZ31) alloy was investigated by long-term Vickers indentation testing under constant loads of 5 and 10 N and at temperatures in the range 423–523 K. Based on the steady-state power-law creep relationship, the stress exponents were determined. The creep behavior can be divided into two stress regimes with different stress exponents and activation energy values. The low-stress regime activation energy of 96.2 kJ mol−1, which can be interpreted as that for the activation energy for Al diffusion in Mg, and stress exponents of about 3.0–3.4 suggest that the operative creep mechanism is dislocation viscous glide governed by the diffusion of aluminum atoms in magnesium. This behavior is in contrast to the high-stress regime, in which the average values of n = 6 and Q = 132.4 kJ mol−1 imply that dislocation climb-controlled creep is the dominant deformation mechanism. Stress exponents and activation energies obtained by different analysis methods of the indentation tests are in good agreement with each other and with those of the conventional tensile creep tests on AZ31 magnesium alloy reported in the literature. The localized indentation creep tests are, thus, considered capable of acquiring reliable information on the creep behavior of wrought magnesium alloys.  相似文献   

18.
High-temperature creep in single crystals of Y3Al5O12 (YAG) was studied by constant strainrate compression tests. The creep resistance of YAG is very high: a stress of ~ 300 MPa is needed to deform at a strain rate of 10–6 (s–1) at a temperature as high as 1900 K (~0.84 T m, (melting temperature)). YAG deforms using the 111 {1¯10} slip systems following a power law with stress exponent n ~ 3 and activation energy E* ~ 720 kJ mol–1. However, a small dependence of n on temperature and of E* on stress was observed. This stress-dependence of activation energy combined with the observed dislocation microstructures suggests that the high creep resistance of YAG is due to the difficulty of dislocation glide as opposed to the difficulty of climb. Present dislocation creep data are compared with diffusion creep data and a deformation mechanism map is constructed. Large transition stresses (2–3 GPa for 10 m grain size) are predicted, implying that deformation of most fine-grained YAG will occur by diffusion creep.  相似文献   

19.
1.IntroductionIntermetallic compound of NiAl with B2crystal struc-ture is regarded as a potential candidate of high tem-perature structural materials because it offers attractivechemical and physical properties,such as high meltingpoint,low density,good thermal conductivity,high resis-tance to oxidation and high stiffness[1,2].Unfortunately,this kind of intermetallic compound shows limited tough-ness at ambient temperatures and poor strength at hightemperatures.An efficient way to prepare int…  相似文献   

20.
蠕变或应力松弛被认为是钛合金板材热成形降低回弹的主要机理。目前对热校形阶段中的蠕变与应力松弛的区别及联系尚缺乏深入研究。本文主要进行了钛合金高温短时蠕变及应力松弛实验, 利用TEM对实验后的显微组织进行了观察。分别研究了温度、应力及时间对蠕变和应力松弛行为的影响规律, 从蠕变率-时间和蠕变-时间角度建立了蠕变与应力松弛之间的联系。研究表明: 钛合金在低温低应力下蠕变以原子扩散为主, 高温高应力下以位错滑移和攀移为主, 而应力松弛在不同温度时均以位错攀移为主要变形机制, 基于蠕变数据预测的应力松弛行为与实验结果符合较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号