首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A spray drying approach has been used to prepare polyurethane/multiwalled carbon nanotube (PU/MWCNT) composites. By using this method, the MWCNTs can be dispersed homogeneously in the PU matrix in an attempt to improve the mechanical properties of the nanocomposites. The morphology of the resulting PU/MWCNT composites was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM and TEM observations illustrate that the MWCNTs are dispersed finely and uniformly in the PU matrix. X‐ray diffraction results indicate that the microphase separation structure of the PU is slightly affected by the presence of the MWCNTs. The mechanical properties such as tensile strength, tensile modulus, elongation at break, and hardness of the nanocomposites were studied. The electrical and the thermal conductivity of the nanocomposites were also evaluated. The results show that both the electrical and the thermal conductivity increase with the increase of MWCNT loading. In addition, the percolation threshold value of the PU composites is significantly reduced to about 5 wt % because of the high aspect ratio of carbon nanotubes and exclusive effect of latex particles of PU emulsion in dispersion. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
The effects of different surfactants on the properties of multiwalled carbon nanotubes/polypropylene (MWCNT/PP) nanocomposites prepared by a melt mixing method have been investigated. Sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (NaDDBS) were used as a means of noncovalent functionalization of MWCNTs to help them to be dispersed uniformly into the PP matrix. The effects of these surfactant‐treated MWCNTs on morphological, rheological, thermal, crystalline, mechanical, and electrical properties of MWCNT/PP composites were studied using field emission scanning electron microscopy, optical microscopy, rheometry, tensile, and electrical conductivity tests. It was found that the surfactant‐treatment and micromixing resulted in a great improvement in the state of dispersion of MWCNTs in the polymer matrix, leading to a significant enhancement of Young's modulus and tensile strength of the composites. For example, with the addition of only 2 wt % of SDS‐treated and NaDDBS‐treated MWCNTs, the Young's modulus of PP increased by 61.1 and 86.1%, respectively. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Nanomaterials gained great importance on account of their wide range of applications in many areas. Carbon nanotubes (CNTs) exhibit exceptional electrical, thermal, gas barrier, and tensile properties and can therefore be used for the development of a new generation of composite materials. Functionalized multiwalled carbon nanotubes (MWCNTs) reinforced Polyacrylonitrile‐co‐starch nanocomposites were prepared by in situ polymerization technique. The structural property of PAN‐co‐starch/MWCNT nanocomposites was studied by X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy. The conductivity, tensile strength, and thermal properties of nanocomposites were measured as a function of MWCNT concentrations. The thermal stability, conductivity, and tensile strength of PAN‐co‐starch/MWCNT nanocomposites were improved with increasing concentration of MWCNTs. Oxygen barrier property of PAN‐co‐starch/MWCNT nanocomposites was calculated and it was found that, the property was reduced substantially with increase of MWCNTs proportion. The synthesized PAN‐co‐starch/MWCNT nanocomposites may used for electrostatically dissipative materials, aerospace or sporting goods, and electronic materials. © 2013 Society of Plastics Engineers  相似文献   

4.
This study investigates the effect of the thiol‐ene click reaction on thermal conductivity and shear strength of the epoxy composites reinforced by various silane‐functionalized hybrids of sulfhydryl‐grafted multi‐walled carbon nanotubes (SH‐MWCNTs) and vinyl‐grafted MWCNTs (CC‐MWCNTs). The results of Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermal gravimetric analysis (TGA), and transmission electron microscopy (TEM) show that the sulfhydryl groups and vinyl groups are successfully grafted onto the surface of MWCNTs, after treatment of MWCNT with triethoxyvinylsilane and 3‐mercaptopropyltrimethoxysilane, respectively. Scanning electron microscopy (SEM), HotDisk thermal constant analyzer (HotDisk), optical microscope, and differential scanning calorimetry (DSC) are used to characterize the resultant composites. It is demonstrated that the hybrid of 75 wt % SH‐MWCNTs and 25 wt % CC‐MWCNTs has better dispersion and stability in epoxy matrix, and shows a stronger synergistic effect in improving the thermal conductivity of epoxy composite via the thiol‐ene click reaction with 2,2′‐azobis(2‐methylpropionitrile) as thermal initiator. Furthermore, the tensile shear strength results of MWCNT/epoxy composites and the optical microscopy photographs of shear failure section indicate that the composite with the hybrid MWCNTs has higher shear strength than that with raw MWCNTs. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44579.  相似文献   

5.
Crosslinked polystyrene‐multiwalled carbon nanotube (PS‐MWCNT) balls, which act as conductive microfillers, were prepared by the in situ suspension polymerization of styrene with MWCNTs and divinyl benzene (DVB) as a crosslinking agent. The diameters of the synthesized crosslinked PS‐MWCNT balls ranged from 10 to 100 μm and their electrical conductivity was about 7.7 × 10?3 S/cm. The morphology of the crosslinked PS‐MWCNT balls was observed by scanning electron microscopy and transmission electron microscopy. The change in the chemical structure of the MWCNTs was confirmed by Raman spectroscopy and Fourier transform infrared spectroscopy. The mechanical and electrical properties of the PS/crosslinked PS‐MWCNT ball composites were investigated. It was found that the tensile strength, ultimate strain, Young's modulus, and impact strength of the PS matrix were enhanced by the incorporation of the crosslinked PS‐MWCNT balls. In addition, the mechanical properties of the PS/crosslinked PS‐MWCNT ball composites were better than those of the PS/pristine MWCNT composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
The high compatibility of fluorene‐based polyester (FBP‐HX) as a polymer matrix for multiwalled carbon nanotubes (MWCNTs) is discussed. A low surface resistivity due to the fine dispersion of MWCNTs in FBP‐HX and polycarbonate (PC) is reported. With a solution‐casting method, a percolation threshold with the addition of between 0.5 and 1.0 wt % MWCNTs was observed in the MWCNT/PC and MWCNT/FBP‐HX composites. Because of the coverage of FBP‐HX on the MWCNTs, a higher surface resistivity and a higher percolation ratio of the MWCNT/FBP‐HX composites were achieved compared with the values for the MWCNT/PC composites. In the MWCNT/FBP‐HX composites, MWCNTs covered with FBP‐HX were observed by scanning electronic microscopy. Because of the coverage of FBP‐HX on the MWCNTs, FBP‐HX interfered with the electrical pathway between the MWCNTs. The MWCNTs in FBP‐HX were covered with a 5‐nm layer of FBP‐HX, but the MWCNTs in the MWCNT/PC composites were in their naked state. MWCNT/PC sheets demonstrated the specific Raman absorption of the MWCNTs only with the addition of MWCNTs of 1 wt % or above because of the coverage of the surface of the composite sheet by naked MWCNTs. In contrast, MWCNT/FBP‐HX retained the behavior of the matrix resin until a 3 wt % addition of MWCNTs was reached because of the coverage of MWCNTs by the FBP‐HX resin, induced by its high wettability. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
Multi‐walled carbon nanotube was modified with polymethyl methacrylate (MWCNT‐PMMA) by in situ solution radical polymerization in the presence of 2,2′‐Azobis (isobutyronitrile) as an initiator. The products with different addition of methyl methacrylate (MMA) were pressed into slices to prepare specimens for electrical conductivity testing. It was found that the MWCNT‐PMMA nanocomposites demonstrate excellent electrical conductivity. To investigate the microsphere morphology and the colloidal surfactant of MWCNTs in MWCNT‐PMMA composites, samples were submitted to scanning electron microscopy and transmission electron microscopy. The thermogravimetric analysis of the prepared composites confirmed that MWCNTs as a thermal stabilizer for PMMA, which could have a wide range of potential applications, such as in catalysts, sensors, environmental remediation, and energy storage. Two series of poly(lactic acid) (PLA) based biocomposites with different MMA additions and MWCNT‐PMMA composites contents were prepared with twin‐screw extruding and injection molding. The results show the mechanical properties changed a little with the MMA and MWCNT‐PMMA composites contents increasing, which suggested the well compatibility between MWCNT‐PMMA composites and PLA. POLYM. COMPOS., 37:503–511, 2016. © 2014 Society of Plastics Engineers  相似文献   

8.
The polypropylene‐grafted multiwalled carbon nanotubes (PP‐MWCNTs) were produced from the reaction of PP containing the hydroxyl groups and MWCNTs having 2‐bromoisobutyryl groups. The PP‐MWCNTs had a significantly rougher surface than the original MWCNTs. PP‐MWCNTs had PP layers of thickness 10–15 nm on the outer walls of the MWCNTs. PP/PP‐MWCNT composites and PP/MWCNT composites were prepared by solution mixing in o‐xylene. Unlike PP/MWCNT composites, PP‐MWCNTs were homogeneously dispersed in the PP matrix. As a consequence, the thermal stability and conductivity of PP/PP‐MWCNT composites were dramatically improved even if only 1 wt % of PP‐MWNTs was added to the PP matrix. The good miscibility of PP and PP‐MWCNTs plays a critical role in the formation of the homogeneous composites and leads the high thermal stability and conductivity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
In this experimental study, lap shear strength and electrical conductivity of nanohybrid adhesives containing multi-walled carbon nanotubes (MWCNT) and silver (Ag) nanoparticles were investigated. Ag nanoparticles were produced via arc-discharge method in liquid nitrogen. For characterizing the Ag nanoparticles, X-ray diffraction analysis, transmission electron microscopy, and scanning electron microscopy (SEM) were performed. Tensile lap shear properties were determined in accordance with ASTM D 1002-10 standard. Mechanical and the electrical properties of nanohybrid adhesives were compared with neat epoxy adhesive. The best electrical conductivity of nanohybrid adhesive was obtained for the 1% wt MWCNT-2% wt Ag-contained sample. However, the samples which contain 0.5% wt. MWCNT–0.5% wt. Ag nanoparticles reached the highest lap shear strength. The results showed that Ag nanoparticles enhance the conductivity in the presence of MWCNT. It is concluded that the MWCNT act as conductivity bridges among epoxy adhesive and facilitate the electron transfer. As seen in the tensile test results, the ductility of the adhesive was improved by adding the nanoparticles in to the epoxy resin.  相似文献   

10.
This article describes the synthesis and characterization of highly conductive polypyrrole (PPy)/multiwalled carbon nanotube (MWCNT) composites prepared by in situ polymerization of pyrrole using 5‐sulfoisophthalic acid monolithium salt [lithio sulfoisophthalic acid (LiSiPA)] as dopant and ferric chloride as oxidant. Several samples were prepared by varying the amounts of MWCNTs ranging from 1 to 5 wt %. Scanning electron microscope and transmission electron microscope images clearly show a thick coating of PPy on surface of MWCNTs. The electrical conductivity of PPy increased with increasing amount of MWCNTs and maximum conductivity observed was 52 S/cm at a loading of 5 wt % of MWCNTs. Pure PPy prepared under similar conditions had a conductivity of 25 S/cm. Electromagnetic interference (EMI) shielding effectiveness (SE) also showed a similar trend and average EMI shielding of ?108 dB (3 mm) was observed for sample having 5 wt % MWCNT in the frequency range of 8.2–12.4 GHz (X‐band). The light weight and absorption dominated total SE of ?93 to ?108 dB of these composites indicate the usefulness of these materials for microwave shielding. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45370.  相似文献   

11.
Poly(butylene terephthalate) (PBT) composites containing multiwalled carbon nanotubes (MWCNTs) were prepared using a melt‐blending process and used to examine the effects on the composite structure and properties of replacing PBT with acrylic acid‐grafted PBT (PBT‐g‐AA). PBT‐g‐AA and multihydroxyl‐functionalized MWCNTs (MWCNTs‐OH) were used to improve the compatibility and dispersibility of the MWCNTs within the PBT matrix. The composites were characterized morphologically using transmission electron microscopy, and chemically using Fourier transform infrared, solid‐state 13C NMR and UV‐visible absorption spectroscopy. The antibacterial and electrical conductivity properties of the composites were also evaluated. MWCNTs or MWCNTs‐OH enhanced the antibacterial activity and electrical conductivity of the PBT/MWCNT or PBT‐g‐AA/MWCNTs‐OH composites. The functionalized PBT‐g‐AA/MWCNTs‐OH composites showed markedly enhanced antibacterial properties and electrical conductivity due to the formation of ester bonds from the condensation of the carboxylic acid groups of PBT‐g‐AA with the hydroxyl groups of MWCNTs‐OH. The optimal proportion of MWCNTs‐OH in the composites was 1 wt%; in excess of this amount, the compatibility between the organic and inorganic phases was compromised. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
A homogeneous dispersion of multi-walled carbon nanotubes (MWCNTs) in syndiotactic polystyrene (sPS) is obtained by a simple solution dispersion procedure. MWCNTs were dispersed in N-methyl-2-pyrrolidinone (NMP), and sPS/MWCNT composites are prepared by mixing sPS/NMP solution with MWCNT/NMP dispersion. The composite structure is characterized by scanning electron microscopy and transmission electron microscopy. The effect of MWCNTs on sPS crystallization and the composite properties are studied. The presence of MWCNTs increases the sPS crystallization temperature, broadens the crystallite size distribution and favors the formation of the thermodynamically stable β phase, whereas it has little effect on the sPS γ to α phase transition during heating. By adding only 1.0 wt.% pristine MWCNTs, the increase in the onset degradation temperature of the composite can reach 20 °C. The electrical conductivity is increased from 10−10∼−16 (neat sPS) to 0.135 S m−1 (sPS/MWCNT composite with 3.0 wt.% MWCNT content). Our findings provide a simple and effective method for carbon nanotube dispersion in polymer matrix with dramatically increased electrical conductivity and thermal stability.  相似文献   

13.
Multi‐walled carbon nanotube (MWCNT)/Poly(ethylene terephthalate) (PET) nanowebs were obtained by electrospinning. For uniform dispersion of MWCNTs in PET solution, MWCNTs were functionalized by acid treatment. Introduction of carboxyl groups onto the surface of MWCNTs was examined by Fourier transform infrared (FTIR) spectroscopy and X‐ray diffraction (XRD) analysis. MWCNTs were added into 22 wt % PET solution in the ratio of 1, 2, 3 wt % to PET. The morphology of MWCNT/PET nanoweb was observed using field emission‐scanning electron microscopy (FE‐SEM) and transmission electron microscopy (TEM). The nanofiber diameter decreased with increasing MWCNT concentration. The distribution of the nanofiber diameters showed a bi‐modal shape when MWCNTs were added. Thermal and tensile properties of electrospun MWCNT/PET nanowebs were examined using a differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA), dynamic mechanical analyzer (DMA) and etc. Tensile strength, tensile modulus, thermal stability, and the degree of crystallinity increased with increasing MWCNT concentration. In contrast, elongation at break and cold crystallization temperature showed a contrary tendency. Electric conductivities of the MWCNT/PET nanowebs were in the electrostatic dissipation range. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
The toughness of cycloaliphatic epoxy resin 3,4‐epoxycyclohexylmethyl‐3′,4′‐epoxycyclohexane carboxylate (ERL‐4221) has been improved by using multiwalled carbon nanotubes (MWCNTs) treated by mixed acids. The MWCNT/ERL‐4221 composites were characterized by Raman spectroscopy and their mechanical properties were investigated. A significant increase in the tensile strength of the composite from 31.9 to 55.9 MPa was obtained by adding only 0.05 wt % of MWCNTs. And a loading of 0.5 wt % MWCNTs resulted in an optimum tensile strength and cracking energy, 62.0 MPa and 490 N cm, respectively. Investigation on the morphology of fracture surface of the composites by field emission scanning electron microscopy demonstrated the crack pinning‐front bowing and bridging mechanisms of toughening. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by the method of solution mixing/casting. The dispersity of the MWCNTs in the PVDF-TrFE matrix was investigated using transmission electron microscopy (TEM), revealing that MWCNT are well distributed in the PVDF matrix. Both individual and agglomerations of MWCNT’s were evident. The electrical properties were characterized by ac conductivity measurements. The conductivity was found to obey a percolation-like power law with a percolation threshold below 0.30 wt. %. The electrical conductivity of the neat PVDF-TrFE could be enhanced by seven orders of magnitude, with the addition of only 0.3 wt. % MWCNTs, suggesting the formation of a well-conducting network by the MWCNT’s throughout the insulating polymer matrix. The intercluster polarization and anomalous diffusion models were used to explain the dielectric behaviors of the composites near the percolation threshold, and the analyses of ac conductivity and dielectric constant imply that the intercluster polarization is more applicable to our systems.  相似文献   

16.
采用熔融复合法制备并研究了聚己二酰间苯二甲胺/多壁碳纳米管(MXD6/MWCNT)复合材料的导电性能。结果表明,MXD6和MWCNT之间的相容性较差,体系中大部分MWCNT倾向于处于团聚状态,使MWCNT构建导电网络的效率大大降低;而添加有机蒙脱土(OMMT)可显著提高复合材料的导电性能,如在MWCNT含量为2份(质量份,下同)的体系中,添加OMMT可使体系的体积电阻率急剧降低7个数量级;OMMT的作用机制在于其在材料混炼过程中,使MWCNT不断分散并承载于更新的OMMT粒子表面上,形成空间上具有高次结构的结构形态,因而极大地改善了导电网络的构筑效率。  相似文献   

17.
Water‐soluble polypyrrole (PPy)/multi‐walled carbon nanotube (MWCNT) composites were prepared by mixing chemically modified MWCNTs carrying carboxylic groups (c‐MWCNTs) and sulfonated PPy (SPPy) aqueous colloids in solution. Fourier transform infrared spectroscopy, Raman spectroscopy, X‐ray photoelectron spectroscopy, X‐ray diffraction, field‐emission scanning electron microscopy and high‐resolution transmission electron microscopy were used to characterize the structure and morphology of the resulting composites. Raman and X‐ray photoelectron spectra demonstrate the presence of electrostatic interactions between the radical species of the SPPy and the carboxylic acid species of the c‐MWCNTs. The addition of c‐MWCNTs into SPPy efficiently enhances its thermal stability and electrical conductivity. Owing to the doping effect and one‐dimensional linear structure of the c‐MWCNTs, the conductivity of SPPy/c‐MWCNT composites at room temperature is increased by two orders of magnitude by the introduction of 5 wt% c‐MWCNTs into the SPPy matrix. Copyright © 2010 Society of Chemical Industry  相似文献   

18.
Poly(ethylene terephthalate) (PET)/multiwalled carbon nanotube (MWCNT) composites were prepared by in situ polymerization. To improve the dispersion of MWCNTs in the PET matrix, functionalized MWCNTs having acid groups (acid‐MWCNTs) and acetic groups (acetic‐MWCNTs) on their surfaces were used. The functional groups were confirmed by infrared spectrometry. Scanning electron microscopy showed that acetic‐MWCNTs had a better dispersion in the PET matrix than pristine MWCNTs and acid‐MWCNTs. A reaction between PET and acetic‐MWCNTs was confirmed by a shift of the Raman G band to a higher frequency and an increase of the complex viscosity in the rheological properties. The composites containing functionalized MWCNTs showed a large increase in their tensile strengths and moduli. The values of the strengths and moduli of the PET/acetic‐MWCNT composites were higher than those of the PET/acid‐MWCNT composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

19.
Carbon nanotubes (CNTs), with their high aspect ratio and exceptionally high mechanical properties, are excellent fillers for composite reinforcement if they are uniformly dispersed without aggregation. Combining the latex compounding and self-assembly techniques, we prepared a novel natural rubber (NR)/multiwalled carbon nanotube (MWCNT) composite. Before self-assembly, the MWCNTs were treated with mixed acid to ensure that the MWCNTs were negatively charged under an alkaline environment. The structure of the MWCNTs was tested with Fourier transform infrared spectroscopy. The properties of composites with different MWCNT loadings were characterized with transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, and tensile testing. The results indicate that the MWCNTs were homogeneously distributed throughout the NR matrix as single tubes and had good interfacial adhesion with the NR phase when the MWCNT loading was less than 3 wt %. In particular, the addition of the MWCNT led to a remarkable reinforcement in the tensile strength, with a peak value of 31.4 MPa for an MWCNT content of 2 wt %, compared to the pure prevulcanized NR (tensile strength = 21.9 MPa). The nanocomposites reinforced with MWCNTs should have wide applications because of the notable improvement in these important properties. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
《Polymer Composites》2017,38(8):1640-1645
A biobased epoxy monomer (GA‐II) derived from gallic acid for multiwalls carbon nanotubes’ (MWCNTs) dispersion improvement is reported in this article. The aromatic group in its molecular structure made it to be absorbed onto the surface of MWCNTs via π‐π interactions and the GA‐II anchored MWCNT could be homogeneously dispersed in DGEBA matrix via sonication. That was proved by Raman and UV spectroscopy as well as scanning electron microscope. After curing reaction, the epoxy/MWCNT composites demonstrated enhanced mechanical properties, excellent thermal conductivity, and high electrical conductivity. With the addition of only 0.5 wt% GA‐II modified MWCNT, the tensile strength, tensile modulus, flexural strength, and flexural modulus of the composites were improved by 28%, 40%, 22%, and 16%, respectively. The thermal and electrical conductivities were also improved from 0.15 to 0.25 W/m K (67% increased) and from 0.7 × 10−14 to 0.24 × 10−4 S cm−1 (10 orders increased). POLYM. COMPOS., 38:1640–1645, 2017. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号