首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Poly(L ‐lactide) (PLA) was melt‐mixed with micrometer‐sized and nanosized calcium carbonate (CaCO3) particles before and after modification with calcium stearate. Adhesion between the CaCO3 particles and the PLA matrix was assessed qualitatively by scanning electron microscopy observation of the fractured surface morphology of the composites. The effect of the incorporation of the CaCO3 particles on the thermal stability of the PLA‐based composites was quantified by the temperatures corresponding to 5 and 50% of weight loss and the activation energy determined through thermogravimetric analyses of the composites. The tensile strength and modulus values of the composite were improved greatly without a significant loss in the elongation at break when the nanosized CaCO3 was incorporated up to 30 wt %. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
Two series of biodegradable polymer blends were prepared from combinations of poly(L ‐lactide) (PLLA) with poly(?‐caprolactone) (PCL) and poly(butylene succinate‐co‐L ‐lactate) (PBSL) in proportions of 100/0, 90/10, 80/20, and 70/30 (based on the weight percentage). Their mechanical properties were investigated and related to their morphologies. The thermal properties, Fourier transform infrared spectroscopy, and melt flow index analysis of the binary blends and virgin polymers were then evaluated. The addition of PCL and PBSL to PLLA reduced the tensile strength and Young's modulus, whereas the elongation at break and melt flow index increased. The stress–strain curve showed that the blending of PLLA with ductile PCL and PBSL improved the toughness and increased the thermal stability of the blended polymers. A morphological analysis of the PLLA and the PLLA blends revealed that all the PLLA/PCL and PLLA/PBSL blends were immiscible with the PCL and PBSL phases finely dispersed in the PLLA‐rich phase. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Poly(L ‐lactide‐co‐ε‐caprolactone)‐b‐poly(L ‐lactide) [P(LL‐co‐CL)‐b‐PLL] diblock copolyesters were synthesized in a two‐step process with 1‐dodecanol (DDC) and stannous octoate as the initiating system. In the first‐step reaction, a 50:50 mol % amorphous poly(L ‐lactide‐co‐ε‐caprolactone) [P(LL‐co‐CL)] copolyester was synthesized via the bulk copolymerization of L ‐lactide and ε‐caprolactone, which was followed by the polymerization of the PLL crystalline block at the end chain in the second‐step reaction. The yielded copolyesters were characterized with dilute‐solution viscometry, gel permeation chromatography, 1H‐ and 13C‐NMR, and differential scanning calorimetry methods. The molecular weights of the P(LL‐co‐CL) copolyesters from the first‐step reaction were controlled by the DDC concentrations, whereas in the second‐step reaction, the molecular weights of the P(LL‐co‐CL)‐b‐PLL diblock copolyesters depended on the starting P(LL‐co‐CL) copolyester molecular weights and L ‐lactide/prepolymer molar ratios. The starting P(LL‐co‐CL) copolyester molecular weights and PLL block lengths seemed to be the main factors affecting specific thermal properties, including the melting temperature (Tm), heat of melting (ΔHm), crystallizing temperature (Tc), and heat of crystallizing (ΔHc), of the final P(LL‐co‐CL)‐b‐PLL diblock copolyester products. Tm, ΔHm, Tc, and ΔHc increased when the PLL block lengths increased. However, these thermal properties of the diblock copolyesters also decreased when the P(LL‐co‐CL) block lengths increased. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

4.
The mechanical, structural, and thermal properties of injection‐molded composites of granular cornstarch, poly(D ,L ‐lactic acid) (PDLLA), and poly(hydroxy ester ether) (PHEE) were investigated. These composites had high tensile strengths, ranging from 17 to 66 MPa, at starch loadings of 0–70 wt %. Scanning electron microscopy micrographs of fracture specimens revealed good adhesion between the starch granule and the polymer matrix, as evidenced by broken starch granules. The adhesion of the starch granules to the polymer matrix was the greatest when the matrix PDLLA/PHEE ratios ranged from zero to unity. At a PDLLA/PHEE ratio of less than unity, as the starch content increased in the composites, there was an increase in the tensile strength and modulus, with a concurrent decrease in elongation. The effects of starch on the mechanical properties of starch/PDLLA composites showed that as the starch content of the composite increased, the tensile strength and elongation to break decreased, whereas Young's modulus increased. In contrast, the tensile strength of starch/PHEE composites increased with increasing starch content. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1775–1786, 2003  相似文献   

5.
Nanocomposites of poly(lactide) (PLA) and the PLA plasticized with diglycerine tetraacetate (PL‐710) and ethylene glycol oligomer containing organo‐modified montmorillonites (ODA‐M and PGS‐M) by the protonated ammonium cations of octadecylamine and poly(ethylene glycol) stearylamine were prepared by melt intercalation method. In the X‐ray diffraction analysis, the PLA/ODA‐M and plasticized PLA/ODA‐M composites showed a clear enlargement of the difference of interlayer spacing between the composite and clay itself, indicating the formation of intercalated nanocomposite. However, a little enlargement of the interlayer spacing was observed for the PLA/PGS‐M and plasticized PLA/PGS‐M composites. From morphological studies using transmission electron microscopy, a finer dispersion of clay was observed for PLA/ODA‐M composite than PLA/PGS‐M composite and all the composites using the plasticized PLA. The PLA and PLA/PL‐710 composites containing ODA‐M showed a higher tensile strength and modulus than the corresponding composites with PGS‐M. The PLA/PL‐710 (10 wt %) composite containing ODA‐M showed considerably higher elongation at break than the pristine plasticized PLA, and had a comparable tensile modulus to pure PLA. The glass transition temperature (Tg) of the composites decreased with increasing plasticizer. The addition of the clays did not cause a significant increase of Tg. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

6.
Citrate esters triethyl citrate, tributyl citrate, and acetyl tributyl citrate were used as plasticizers for amorphous poly(D,L ‐lactide) (PDLLA). The resultant compositions were analyzed by means of differential scanning calorimetry (DSC), dynamic mechanical thermal analysis, and tensile testing to investigate the properties of the blends. Glass transition temperatures (Tgs) obtained by DSC were also compared to theoretically calculated Tgs. Increasing plasticizer content decreased the resultant Tg of the blend with plasticizer efficiency enhanced as the molecular weight of the citrate ester increased. However, in blends with high plasticizer content, a lack of miscibility also occurred with increased molecular weight. Theoretical results were comparable with those obtained experimentally at compositions, which were miscible. Increasing plasticizer content increased the ductility and decreased the strength of the polymer. The addition of 10 wt % plasticizer to PDLLA decreased tensile strength by over 50% with the deterioration larger at higher concentrations of plasticizer. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
BACKGROUND: Polymer/multi‐walled carbon nanotube (MWCNT) composites are one of the most promising alternatives to conventional polymer composites filled with micrometre‐sized fillers. This approach can also be applied for the improvement of mechanical properties and thermal stability of biodegradable aliphatic polyesters, such as poly(L ‐lactide) (PLLA), which have been receiving increasing attention due to environmental concerns. Thermal degradation behaviour provides useful information for the determination of the optimum processing conditions and for identification of potential applications of final products. RESULTS: The PLLA/MWCNT composites investigated showed a higher thermal degradation peak temperature and onset temperature of degradation along with a higher amount of residue at the completion of degradation than neat PLLA. Moreover, PLLA/MWCNT composites with a greater MWCNT content showed higher activation energy of thermal degradation than those with a lower MWCNT loading, which confirmed the positive effect of MWCNT incorporation on the enhancement of PLLA thermal stability. CONCLUSION: This study explored the thermal degradation behaviour of PLLA/MWCNT composites by observing the weight loss, molecular weight and mechanical properties during non‐isothermal and isothermal degradation. The incorporation of MWCNTs into the PLLA matrix enhanced considerably the mechanical properties and thermal stability. Copyright © 2009 Society of Chemical Industry  相似文献   

8.
The purpose of this study was to study the mechanical properties of poly(methyl methacrylate) (PMMA)‐based bone cement incorporated with hydroxyapatite (HA) nanoparticles after surface modification by poly(methyl methacrylate‐co‐γ‐methacryloxypropyl timethoxysilane) [P(MMA‐co‐MPS)]. PMMA and P(MMA‐co‐MPS) were synthesized via free‐radical polymerization. P(MMA‐co‐MPS)‐modified hydroxyapatite (m‐HA) was prepared via a dehydration process between silane and HA; the bone cement was then prepared via the in situ free‐radical polymerization of methyl methacrylate in the presence of PMMA and P(MMA‐co‐MPS)–m‐HA. Fourier transform infrared (FTIR) spectroscopy, 1H‐NMR, and gel permeation chromatography were used to characterize the P(MMA‐co‐MPS). Thermogravimetric analysis and FTIR were used as quantitative analysis methods to measure the content of P(MMA‐co‐MPS) on the surface of HA. The effect of the proportion of m‐HA in the PMMA‐based bone cement on the mechanical properties was studied with a universal material testing machine. A 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay was also carried out to determine the cytotoxicity of the composite bone cement. The results showed that the surface modification of HA greatly improved the interaction between the inorganic and organic interfaces; this enhanced the mechanical properties of bone cement for potential clinical applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40587.  相似文献   

9.
Triacetin (TAC) is known as a lubricant of poly(L ‐lactide) (PLLA), and it is used to improve the mechanical properties of PLLA. However, the compatibility of TAC with PLLA and the morphological changes induced by the addition of TAC to PLLA have not been clarified. This study investigates the effects of the addition of TAC on the morphological changes and physical properties of PLLA. We prepared the PLLA films containing a given amount of TAC by solvent‐cast blending with chloroform under a low temperature. From the investigation of the mechanical properties of the blends, it is found that the glass‐transition temperature of PLLA is remarkably decreased with an increasing amount of TAC, the blend films exhibit high elastic recovery, and the degree of the recovery increases linearly with the amount of TAC. The morphological changes exhibiting high elastic recovery are discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 474–480, 2003  相似文献   

10.
α,ω‐Dihydoxy‐terminated poly(L ‐lactide)s (PLLA diols) with various molecular weights (1000, 2000 and 3000 g mol?1) were prepared by the ring‐opening polymerization of L ‐lactide using 1,6‐hexanediol as an initiator. These were subsequently chain‐extended with the diacyl chloride of 4,4′‐(adipoyldioxy)dicinnamic acid (CAC) to obtain high‐molecular‐weight photocurable polyesters (CAC/PLLAs). The resulting polyesters were characterized by gel permeation chromatography, Fourier‐transform infrared, ultraviolet–visible and proton nuclear magnetic resonance spectroscopies, differential scanning calorimetry and thermogravimetry. These photoreactive polyesters were irradiated with a high‐pressure mercury lamp (λ > 280 nm) for 30–180 min to produce the crosslinked polyesters. The gel fraction yield increased with photocuring time, and exceeded 80 % after 180 min. The photocuring process disturbed the crystallization of the CAC/PLLA films, while it enhanced their thermal stabilities. With increasing photocuring time, both the tensile strength and modulus increased markedly. The best mechanical properties (tensile strength = 41 MPa; tensile modulus = 1550 MPa) were obtained for a CAC/PLLA‐3000 film photocured for 180 min. The tensile modulus of this photocured film was larger than that of pure PLLA. The hydrolytic degradation rates of the CAC/PLLA films in a phosphate buffer solution (pH, 7.2) of proteinaze‐k at 37 °C were much slower than those of pure PLLA films. Copyright © 2004 Society of Chemical Industry  相似文献   

11.
Electrospraying is a one‐step technique for fabricating polymeric microspheres/nanospheres, and the surface characterization of polymeric microspheres fabricated under high voltage is different from an emulsion method. In this study, biodegradable poly(l ‐lactide) (PLLA) microspheres were successfully fabricated by electrospraying, and electrospraying parameters were used to investigate the size and ζ potential of the electrosprayed PLLA microspheres. The results demonstrate that electrospraying was a one‐step method for fabricating monodispersed PLLA microspheres with a size of 1.92 ± 0.35 μm and that the enrichment of methyl groups on the surface of the microspheres contributed to the strong hydrophobicity of electrosprayed PLLA microspheres. Of all the electrospraying parameters investigated, the size and ζ potential of the PLLA microspheres increased with increasing solution concentration and flow rate and decreased with increasing injection voltage and collecting distance. The results provide a theoretical basis for preparing electrosprayed polymeric microspheres as drug carriers. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
Biodegradable poly(L ‐lactide) (PLLA) scaffolds with well‐controlled interconnected irregular pores were fabricated by a porogen leaching technique using gelatin particles as the porogen. The gelatin particles (280–450 μm) were bonded together through a treatment in a saturated water vapor condition at 70°C to form a 3‐dimensional assembly in a mold. PLLA was dissolved in dioxane and was cast onto the gelatin assembly. The mixtures were then freeze‐dried or dried at room temperature, followed by removal of the gelatin particles to yield the porous scaffolds. The microstructure of the scaffolds was characterized by scanning electron microscopy with respect to the pore shape, interpore connectivity, and pore wall morphology. Compression measurements revealed that scaffolds fabricated by freeze‐drying exhibited better mechanical performance than those by room temperature dying. Along with the increase of the polymer concentration, the porosity of the scaffolds decreased whereas the compressive modulus increased. When the scaffolds were in a hydrated state, the compressive modulus decreased dramatically. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1373–1379, 2005  相似文献   

13.
Graphene oxide (GO) and carbon nanotubes (CNTs) and their compound were introduced into semicrystalline poly(l ‐lactide) (PLLA) to prepare the corresponding binary and/or ternary nanocomposites, respectively. The dispersion states of nanofillers in different nanocomposites were investigated using UV‐Vis spectroscopy, scanning electron microscopy (SEM) and rheological measurement. The results showed that when GO and CNTs were simultaneously present in the PLLA matrix, good dispersion states of both GO and CNTs could be achieved and the ternary nanocomposites exhibited percolated network structure. The effects of different nanofillers on the crystallization behavior of PLLA matrix were comparatively investigated under the different crystallization conditions including melt crystallization process (nonisothermal and isothermal crystallization from the melt) and cold crystallization (crystallization occurring from an amorphous state during the annealing process). The results showed that GO and CNTs exhibited apparent synergistic effects in improving crystallization ability and enhancing crystallinity of PLLA matrix. Study on the thermal stability of nanocomposites showed that the presence of nanofillers greatly improved the thermal stability of PLLA matrix. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40143.  相似文献   

14.
Neuromuscular disease or peripheral nerve damage can interrupt muscle contraction, but tissue engineered constructs can be created to combat this problem. Electrospinning provides a way to create a degradable nonwoven mesh that can be used to culture cells and tissues. Conductive polymers can be blended with other polymers to provide an electrical current to increase cell attachment, proliferation, and migration. We electrospun several polyaniline and poly(D ,L ‐lactide) (PANi/PDLA) mixtures at different weight percents including the following PANi‐PDLA solutions (w/v): 24% (83% PDLA/17% PANi), 24% (80% PDLA/20% PANi), 22% (75%PDLA/25% PANi), 29% (83% PDLA/17% PANi), and 29% (80% PDLA/20% PANi). Only the 75/25 electrospun scaffold was able to conduct a current of 5 mA. The calculated electrical conductivity for this scaffold was 0.0437 S/cm. Primary rat muscle cells were cultured on all three of the scaffolds and on tissue culture polystyrene as a positive control. Although the scaffolds degraded during this process, cells were still able to attach and proliferate on each of the different scaffolds. The cellular proliferation measurements showed no significant difference between the four groups measured. The conductivity and cellular behavior demonstrate the feasibility of fabricating a biocompatible, biodegradable, and electrically conductive PDLA/PANi scaffold. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
Composites of poly(D ,L ‐lactide) (PDLLA) with hydroxylapatite (HA) and PDLLA with tertiary calcium phosphate (TCP) were prepared by in situ modification with methylenediphenyl diisocyanate (MDI) and molded by piston extrusion at temperature between Tg and Tm of PDLLA. Mechanical properties of the composites increased obviously when compared with the unmodified bioactive ceramic particles/PDLLA composites. The effect of MDI contents on mechanical properties of the composites was studied. At the optimum conditions of 1.0/1.0molar ratios of ? NCO groups in MDI to ? OH groups in PDLLA, bending strength 68.4 MPa and bending modulus 2281.5 MPa, were achieved in composite HA/PDLLA/MDI with 15 wt % HA. Both increased by nearly 30% when compared with that of solution cast HA/PDLLA composites. Interfacial adhesion and compatibility between PDLLA and bioactive ceramic particles (HA and TCP) were investigated. Scanning electron microscopy (SEM) indicated that the interface between HA particles and PDLLA was blurred and HA particles were closely surrounded by PDLLA matrix in HA/PDLLA/MDI composites. Oriented fibrils along with longitudinal direction of extrusion die were also observed on the surfaces of HA/PDLLA/MDI composite. It is confirmed that MDI has improved interfacial adhesion and compatibility between HA particles and PDLLA phase. Fibril structures formed in the extrusion, and it contributed a great deal in enhancing the mechanical properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4085–4091, 2006  相似文献   

16.
The influence of processing conditions during melt extrusion on the degradation of poly(L ‐lactide) (PLLA) has been investigated. PLLA polymer was processed by melt extrusion in a double screw extruder at 210 and 240°C. For each extrusion temperature, two screw rotation speeds, 20 and 120 rpm, were used. To investigate the influence of moisture on the thermal degradation during processing, the PLLA granules were dried at 100°C for 5 h and then either extruded directly or conditioned at 65% RH, 20°C for 24 h prior to extrusion. The results show that a decrease in molecular weight measured as number‐average (Mn) molecular weight occurs for all combinations of process parameters used. At processing temperature of 210°C, the change in molecular weight for the dry granules was shown to be dependent on the residence time (i.e., screw rotation speed) in the melt. By changing the screw rotation speed from 120 to 20 rpm at 210°C, Mn decreased from 33,600 to 30,200 g/mol. When the processing temperature was increased to 240°C, the dry granules showed an Mn of 25,600 and 13,600 g/mol when extruded at 120 and 20 rpm, respectively. Mn for the conditioned specimens extruded at 210°C was 18,400 g/mol when processed at 120 rpm and 12,300 g/mol at 20 rpm. When processed at 240°C, 20 rpm, Mn is independent of whether the granules were dry or moist prior to extrusion. It is probably due to the fact that the degradation at 240°C is so extensive that the presence of moisture in the polymer does not contribute further to the degradation process. The stress and strain at break decreased due to degradation and were dependent on the molecular weight of the samples. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2128–2135, 2001  相似文献   

17.
Electrospun fibrous membranes have been used frequently in biomedical applications, but their simultaneous use as antibacterial agents and in the prevention of cell adhesion on repaired tendons after injury has not been investigated. In this study, silver‐nanoparticle (SN)‐loaded poly(L ‐lactide) (PLLA) fibrous membranes were prepared by the electrospinning of SNs into PLLA fibers. Micrograph results showed that these membranes were composed of electrospun fibers and that the fibers were incorporated with SNs. From the results of X‐ray diffraction and thermogravimetry, we concluded that the SNs were physically mixed into the fibers at the desired content. The mechanical properties were not significantly changed. The preliminary antibacterial effects on Staphylococcus epidermidis and Staphylococcus aureus and the synergistic antiproliferative effects of the SN‐loaded PLLA fibrous membranes were observed. Taken together, these results demonstrate that SNs can be directly loaded onto a biodegradable PLLA fibrous membrane via electrospinning to achieve proper material properties with preliminary potential as antibacterial antiadhesion barriers for tendon injury. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Amorphous poly(L ‐lactide) (PLLA) composite films with titanium dioxide (TiO2) particles were prepared by solution‐casting using methylene chloride as a solvent, followed by quenching from the melt. The effects of surface treatment, volume fraction, size, and crystalline type of the TiO2 particles on the mechanical properties and enzymatic hydrolysis of the composite films were investigated. The tensile strength of the PLLA composite films containing TiO2 particles except for anatase‐type ones with a mean particle size of 0.3–0.5 μm was lowered and the Young's modulus became higher with increasing the content of TiO2 particles. The tensile strength of the composite films containing anatase‐type TiO2 with a mean particle size of 0.3–0.5 μm at contents of 20 wt % or less was almost the same as that of the pure PLLA film. The enzymatic hydrolysis of PLLA matrix was accelerated by the addition of the hydrophilic anatase‐type TiO2 particles (nontreated or Al2O3 treated) with a mean particle size of 0.3–0.5 μm at relatively high contents such as 20 wt %. On the other hand, the enzymatic hydrolysis of PLLA matrix was inhibited by composite formation with the hydrophobic rutile‐type TiO2 particles (Al2O3‐stearic acid treated, or ZrO2‐Al2O3‐stearic acid treated). These results suggest that the mechanical properties and enzymatic hydrolyzability of the PLLA can be controlled by the kind and amount of the added TiO2 particles. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 190–199, 2005  相似文献   

19.
Biodegradable poly(L ‐lactide) (PLA)/silica (SiO2) nanocomposites were prepared by melt compounding to investigate the effect of spherical nanofillers on the thermal stability of PLA. The nanocomposites displayed improved thermal stability both under nitrogen and in air. The stabilization mechanism was attributed mainly to the barrier effect of the network formed, which was demonstrated by the improved barrier properties and rheological performance. The dispersion of nanofiller and matrix‐nanoparticle interactions were investigated to evaluate the dependence of the network on SiO2 loadings. Fourier transform infrared spectroscopy and thermogravimetric analysis indicated that hydroxyl groups on SiO2 surfaces and PLA chain‐ends reacted during melt processing. The resulting grafted SiO2 and entangled PLA chains formed a dense network, which hindered the diffusion of oxygen and volatile decomposition products. Furthermore, the improvement in thermal stability resulted from the restraining effect on the mobility of active hydroxyl end‐groups, so that some related thermal decomposition reactions were inhibited, which was confirmed from gel permeation chromatography measurements. Copyright © 2010 Society of Chemical Industry  相似文献   

20.
In this study, the blend of polycarbonate (PC)/poly(L‐lactide) (PLLA) (70/30) was prepared through the conventional extrusion‐injection‐molding process. The morphology of the blend was characterized using scanning electron microscope. Both differential scanning calorimetry and wide angle X‐ray diffraction were used to investigate the crystallization behavior of PLLA component in the blend. The mechanical and thermal properties of the blend were comparatively investigated, and the hydrolytic degradation ability of the material was also evaluated. The results show that the dispersed‐PLLA particles are in the amorphous state in the PC matrix. Although the blend is immiscible, the rigid PLLA particles exhibit the toughening and reinforcement effects on PC simultaneously. Specifically, the heat‐distortion temperature of the blend is comparable to that of pure PC. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号