首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The traditional method for obtaining best combination of reaction parameters for graft copolymerization of 4‐vinylpyridine onto poly(vinylidene fluoride) films was modified using Box‐Behnken factorial design available in the response surface method (RSM). A computer‐assisted statistical simulator was used to obtain the optimum absorbed dose, monomer concentration, grafting time and reaction temperature to achieve the highest degree of grafting (G%) based a quadratic model. The validity of the developed model was confirmed by experimental data, which only deviated by a 2% from the predicted value of G% confirming the effectiveness of RSM in optimization of the reaction parameters in the present grafting system. A comparison was also made between the obtained model and that of 1‐vinylimidazole/poly(ethylene‐co‐tetrafluoroethylene) grafting system. The chemical structure, morphology and thermal stability of the obtained graft copolymers was investigated by means of Fourier transform infrared, filed emission scanning electron microscope, and thermogravimetric analysis, respectively. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
Radiation‐induced grafting of styrene onto poly(tetrafluoroethylene) (PTFE) films was studied by a simultaneous irradiation technique. Grafting was carried out using γ‐radiation from a 60Co source at dose rates of 1.32–15.0 kGy h−1 at room temperature. The effects of type of diluent, dose rate, irradiation dose, and the initial monomer concentration in the grafting solution on the degree of grafting were investigated. The degree of grafting was found to be strongly dependent upon the grafting conditions. The dependence of the initial rate of grafting on the dose rate and the initial monomer concentration in the grafting solution was found to be in the order of 0.6 and 1.7, respectively. The chemical structure and the crystallinity of the grafted PTFE films were studied by means of Fourier‐transform infrared, (FTIR), electron spectroscopy for chemical analysis (ESCA) and X‐ray diffractometry (XRD). © 2000 Society of Chemical Industry  相似文献   

3.
In the present work, polybenzimidazole (PBI) and poly(4‐vinylpyridine) (P4VP) were chosen because they form miscible blends and both materials are suitable for acid doping as a matrix, which can eventually be used as proton conductor. The miscibility and inter‐polymer interactions were studied by infrared (IR) spectroscopy and differential scanning calorimetry (DSC). DSC and IR results suggest that PBI blended with P4VP exhibits good miscibility due to the strong hydrogen bonds formed between PBI's NH groups and P4VP's N: groups. The glass transition temperatures of the blends can be fitted to the Fox equation very well. The blends were also studied by thermogravimetry. Their thermal stability is slightly higher than that of P4VP, but is still lower than that of PBI. Temperature‐dependent conductivity of acid‐doped PBI/P4VP blends was studied. As the temperature increases, the conductivity of PBI/P4VP doped with H3PO4 increases. The temperature‐dependent conductivity of the blends follows a simple Arrhenius relationship when the P4VP content is low (less than 15%), while a non‐Arrhenius behaviour of the conductivity of the blends becomes more and more significant with increasing P4VP content. This means that the proton transport in the blends is controlled by both a hopping mechanism and the segmental motion of the polymer. The contribution of these two mechanisms depends on the P4VP content. Copyright © 2003 Society of Chemical Industry  相似文献   

4.
Solvothermal process was successfully developed to graft dibutylmaleate (DBM) onto poly(ethylene‐co‐1‐octene) (POE) with dicumyl peroxide (DCP) as free radical‐initiator. FTIR spectra demonstrate that DBM is successfully grafted onto the backbone of POE by this novel method. The influences of DBM content, DCP concentration, POE concentration, reaction temperature and reaction time on the grafting copolymerization have been investigated in detail through grafting degree (GD). It is worthy to indicate that high grafting degree (above 15%) can be achieved through the one‐pot way when the graft reaction is carried out in 40 mL toluene at 150°C for 5 h with 1.6 g DBM, 6–8 g POE and 0.35 g DCP. This developed solvothermal process is becoming an effective way to prepare POE‐g‐DBM graft copolymers, and can be extended to other systems. In addition, TGA results show that the thermal properties of POE are enhanced after the grafting reaction. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Modification of chitosan by grafting with 4‐vinylpyridine (VP) was carried out both in homogeneous and heterogeneous phases, using potassium persulfate (K2S2O8) and sodium bisulfite (NaHSO3) as redox initiators. The effect of monomer concentration, initiator concentration and redox ratio, time and temperature on the extent of grafting (G%), homopolymer formation, and the efficiency of grafting were studied. Values of grafting percentages up to 96% were reached in heterogeneous conditions and up to 130% in homogeneous conditions (in 5% acetic acid). The grafting was confirmed by FTIR and 1H NMR spectroscopy. The grafted samples were characterized by scanning electron microscopy, X‐ray diffraction, and thermogravimetric analysis. The crystallinity of the used chitosan was not affected by grafting, it even increased slightly. Dye uptake of the grafted samples towards the different types of dyes (acidic and basic) was investigated and was found to improve profoundly over the native chitosan with a higher uptake for the acidic dye. The grafted samples showed an increased swelling in water, which increased further upon quaternization of the graft copolymers. The extent of swelling is higher in acidic and basic media more than in neutral pH. The grafted copolymers are soluble with difficulty in warm acetic acid solution. The quaternized graft copolymer was found to be soluble in water. The biological activity of the quaternized graft copolymers (G = 130 and 80%) was investigated and was found to have an inhibition effect on both the Azotobacter fungus and the bacterium Fusarium oxysporium. The effect on the micro organisms is proportional to the amount of VP in the graft copolymer. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3308–3317, 2006  相似文献   

6.
In this study, we demonstrated that vinylbenzyl chloride (VBC), a versatile monomer with reactive a chloromethyl group could be grafted onto a poly(tetrafluoroethylene‐co‐hexafluoropropylene) (FEP) film without a degradation of the chloromethyl group during a simultaneous irradiation process. The effects of various irradiation conditions such as the total dose, dose rate, solvent, and VBC concentration on the degree of grafting of VBC onto a FEP film were also investigated. The prepared PVBC‐grafted films were characterized using FTIR, TGA, and SEM EDX. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
Poly(styrene‐co‐methacrylic acid) containing 29 mol % of methacrylic acid (SMA‐29) and poly(isobutyl methacrylate‐co‐4‐vinylpyridine) containing 20 mol % of 4‐vinylpyridine (IBM4VP‐20) were synthesized, characterized, and used to elaborate binary and ternary nanocomposites of different ratios with a 3% by weight hexadecylammonium‐modified bentonite from Maghnia (Algeria) by casting method from tetrahydrofuran (THF) solutions. The morphology and the thermal behavior of these binary and ternary elaborated nanocomposites were investigated by X‐ray diffraction, scanning electron microscopy, FTIR spectroscopy, differential scanning calorimetry, and thermogravimetry. Polymer nanocomposites and nanoblends of different morphologies were obtained. The effect of the organoclay and its dispersion within the blend matrix on the phase behavior of the miscible SMA29/IBM4VP20 blends is discussed. The obtained results showed that increasing the amount of SMA29 in the IBM4VP20/SMA29 blend leads to near exfoliated nanostructure with significantly improved thermal stability. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Poly 4‐vinylpyridine (P4VP) microspheres between 170 and 728 nm were synthesized by Emulsifier‐Free Emulsion Polymerization. The monomer concentration, ionic strength, and initiator concentration affected the microsphere size and size distribution. The increasing monomer concentration led to the increase of microsphere size, whereas the size distribution of the resultant P4VP microspheres increased with the increasing ionic strength of the reaction systems. Mo(O2)2O·2DMF was successfully anchored onto the P4VP microspheres by ligand exchange, and the heterogeneous catalyst showed high‐catalytic activity for epoxidation of cis‐cyclooctene with environmentally friendly hydrogen peroxide. The size and morphology of the supported microspheres has important influence on the catalytic activity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
Stimuli‐responsive elastomers are smart materials for sensing applications. Natural rubber (NR) is a renewable elastomer with excellent elasticity and fatigue resistance. In this work, a straightforward method for the preparation of pH‐responsive crosslinked materials from NR and poly(4‐vinylpyridine) (P4VP) via free radical crosslinking reaction using benzoyl peroxide (BPO) as an initiator is described. The effects of P4VP and BPO concentrations, reaction time and reaction temperature on immobilization percentage were investigated. It was found that the immobilization percentage reached 90% when using a P4VP concentration of 150 phr and a BPO concentration of 10 phr for 24 h at 90 °C. The pH responsiveness of the crosslinked materials was studied via water swelling, water contact angle and dye release measurements. Unlike unmodified rubber, the P4VP‐crosslinked NR was found to be pH‐responsive in acidic solution. Indigo carmine adsorption studies showed the Langmuir isotherm suggesting monolayer coverage of dye on the rubber surface. The dye could also be released upon increasing the pH of solution above 4. Based on these results, the introduction of pH responsiveness to NR will lead to novel responsive rubber‐based materials that can be used in biomedical and sensing applications. © 2016 Society of Chemical Industry  相似文献   

10.
Radiation‐induced grafting of sodium styrene sulfonate and acrylic acid onto high‐density polyethylene (HDPE) membranes was studied by the preirradiation technique. Grafting was carried out using an electronic beam from a 2‐MeV accelerator at room temperature. The effects of the type of solvent, inhibitor concentration, preirradiation atmosphere, monomer concentration, and storage time of preirradiated HDPE membranes on the grafting yield were investigated. Easy control over the grafting yield was achieved by proper selection of the reaction conditions. IR spectroscopy analysis of the grafted membrane confirmed the existence of sulfonate and carboxylic acid groups in the grafted membranes. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3401–3405, 2006  相似文献   

11.
The effect of irradiation under vacuum on thermal properties and swelling behavior on poly(4‐vinylpyridine) (P4VP) was investigated. The gel percentage in the irradiated P4VP films was determined by Soxhlet extraction. UV spectroscopy was also used to determine sol percentage, which decreased as the radiation dose increased. The changes in thermal properties, such as glass‐transition temperature (Tg), were followed by differential scanning calorimetry before and after Soxhlet extraction. The gels prepared after irradiation were characterized with respect to their swelling properties and network structures. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2609–2614, 2001  相似文献   

12.
Crosslinked polyacrylamide beads were irradiated in air with a Co60 γ‐radiation source. The preirradiated beads were graft‐copolymerized through heating with 4‐vinylpyridine in the presence of benzoyl peroxide. Grafting was studied as a function of various reaction parameters and was determined from the increase in the weight of the original polymer and the estimation of pyridine pendants in the homopolymer‐free graft copolymer. Although making the polymer basic in character, this modification retained the hydrophilic nature of polyacrylamide. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2613–2620, 2002  相似文献   

13.
The simultaneous radiation grafting of styrene onto poly(tetrafluoroethylene‐co‐hexafluoropropylene) (FEP) films was studied at room temperature. The effects of grafting conditions (type of solvent, irradiation dose, dose rate, and monomer concentration) were investigated. The degree of grafting was found to be dependent on the investigated grafting conditions. The dependence of the initial rate of grafting on the dose rate and the monomer concentration was found to be of 0.5 and 1.3 orders, respectively. The results suggest that grafting proceeds by the so‐called front mechanism in which the grafting front starts at the surface of the film and moves internally toward the middle of the film by successive diffusion of styrene through the grafted layers. Some selected properties of the grafted films were evaluated in correlation with the degree of grafting. We found that the grafted FEP films possess good mechanical stability, which encourages their use for the preparation of proton exchange membranes. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 220–227, 2000  相似文献   

14.
As a biodegradable functional polymer, poly[(sodium acrylate)‐co‐(4‐vinylpyridine)] [P(SA‐co‐4VP)] containing a small amounts of 4‐vinylpyridine groups were prepared and their biodegradability, dispersity, and complex performance were analyzed. The polymers can be useful as detergent builders and dispersants. It was found that the biodegradation of P(SA‐co‐4VP) was more conspicuous when content of the 4‐vinylpyridine in the copolymer was larger. This indicates that the 4‐vinylpyridine, which acts as biodegradable segments, should be incorporated into the polymer main chain in such a manner that they are digested by activated sludge. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1953–1957, 1999  相似文献   

15.
The miscibility of the poly(vinyl chloride)/poly(methylmethacrylate) system were improved by introducing pyridine units into poly(methylmethacrylate) main. For this purpose, we have synthesized through a radical polymerization a series of methylmethacrylate‐co‐vinyl‐4‐pyridine copolymers of different compositions and carried out a comparative study by viscosimetry, differential scanning calorimetry, and Fourier transform infrared spectroscopic (FTIR) methods. The viscosimetric analysis using the Krigbaum‐Wall, K. K. Chee, and Compos approaches revealed that, the Poly(vinyl chloride)/poly(methylmethactylate‐co‐4‐vinylpyridine)(PVC/MMA4VP‐15) at 15 wt % of 4‐vinylpyridine systems in tetrahydrofuran are completely miscible in all proportions. The differential scanning calorimetry analysis confirmed the miscibility of these systems in all proportions by the appearance of only one glass transition temperature between those of the two pure constituents. The Kwei and Schneider approaches showed also the miscibility of this system, which is due to the specific interactions between the acidic hydrogen atom of PVC and the nitrogen of MMA4VP‐15. The use of FTIR method has confirmed the occurrence of this kind of interactions by broadening and shifting of the involved functional groups vibration bands. In this work, we have also carried out a preliminary test of sorption of THF aqueous solution by PVC and PVC/MMA4VP‐15 blend membranes. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
Proton exchange membrane fuel cells are one of the most promising technologies for sustainable power generation in the future. In particular, high‐temperature proton exchange membrane fuel cells (HT‐PEMFCs) offer several advantages such as increased kinetics, reduced catalyst poisoning and better heat management. One of the essential components of a HT‐PEMFC is the proton exchange membrane, which has to possess good proton conductivity as well as stability and durability at the required operating temperatures. Amongst the various membrane candidates, phosphoric acid‐impregnated polybenzimidazole‐type polymer membranes (PBI/PA) are considered the most mature and some of the most promising, providing the necessary characteristics for good performance in HT‐PEMFCs. This review aims to examine the recent advances made in the understanding and fabrication of PBI/PA membranes, and offers a perspective on the future and prospects of deployment of this technology in the fuel cell market. © 2014 Society of Chemical Industry  相似文献   

17.
Strong acid cation‐exchange membranes were obtained by radiation‐induced grafting of acrylic acid and sodium styrene sulfonate onto high‐density polyethylene (HDPE). Thermal and chemical properties of the cation‐exchange membranes were investigated. The effectiveness of ? SO3Na containing membranes was conformed in inducing high resistance to oxidative degradation. The char residue of the grafted HDPE is greater than that of ungrafted HDPE. It shows that the branch chains, including ? SO3Na and ? COOH groups, give catalytic impetus to the charring. The crystallinity of the grafted membranes was decreased when increasing the grafting yield. It was assumed that the decreased crystallinity was due to collective effects of the inherent crystallinity dilution by the amorphous grafted chains and the crystal distortion of the HDPE component. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99:3396–3400, 2006  相似文献   

18.
Microspheres with silica as core and poly(4‐vinylpyridine) (P4VP) as shell were synthesized. AuCl ions were bound by P4VP chains to form the complex, which acted both as an oxidant of pyrrole monomers and as a source of Au atoms. By vapor phase polymerization, the PPy and Au nanoparticles were simultaneously formed on the surfaces of SiO2@P4VP microspheres. The core‐shell structure was confirmed by transmission electron microscopy. The surface morphologies of the composites were observed by scanning electron microscopy. The molecular structures of composites were characterized in detail by Raman spectra, X‐ray diffraction, and X‐ray photoelectron spectroscopy. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
Poly(L ‐lactic acid) (PLLA) was blended with poly(ethylene‐co‐vinyl alcohol) (EVOH) in the presence of an esterification catalyst to induce reaction between the hydroxyl groups of EVOH and the terminal carboxylic group of PLLA. Nascent low‐molecular‐weight PLLA, obtained from a direct condensation polymerization of L ‐lactic acid in bulk state, was used for the blending. Domain size of the PLLA phase in the graft copolymer was much smaller than that corresponding to a PLLA/EVOH simple blend. The mechanical properties of the graft copolymer were far superior to those of the simple blend, and the graft copolymer exhibited excellent mechanical properties even though the biodegradable fraction substantially exceeded the percolation level. The grafted PLLA reduced the crystallization rate of the EVOH moiety. Melting peak temperature (Tm) of the PLLA phase was not observed until the content of PLLA in the graft reaction medium went over 60 wt %. The modified Sturm test results demonstrated that biodegradation of EVOH‐g‐PLLA took place more slowly than that of an EVOH/PLLA simple blend, indicating that the chemically bound PLLA moiety was less susceptible to microbial attack than PLLA in the simple blend. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 886–890, 2005  相似文献   

20.
Graft copolymerization of 2‐ethyl methacrylate phosphoric acid (EMPA) onto nylon 6 fabric is carried out using the K2S2O8/CuSO4 system as reaction initiators. The most important factors affecting the graft yield are monomer concentration, reaction time and temperature. It was found that the graft yield increased with increasing EMPA concentration, grafting time, and temperature. The grafted nylon 6 fabric shows an increase in moisture regain to reach a maximum of 8.01% with increasing the graft yield to 35.6%. Also, the dyeability with the basic dye was significantly increased due to grafting with EMPA. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1357–1361, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号