共查询到20条相似文献,搜索用时 12 毫秒
1.
After polyglycerol polyglycidyl ether (PGPE) and glycerol polyglycidyl ether (GPE) were mixed with tannic acid (TA) in ethanol and without solvent at epoxy/hydroxyl ratio 1/1, the obtained GPE‐TA and PGPE‐TA solutions were mixed with wood flour (WF), prepolymerized at 50°C, and subsequently compressed at 160°C for 3 h to give GPE‐TA/WF and PGPE‐TA/WF biocomposites with WF content 50–70 wt %, respectively. The storage moduli of the biocomposites in the rubbery state at more than 80°C were much higher than that of the control cured resins. The PGPE‐TA/WF composites had higher tensile modulus and rather lower tensile strength than PGPE‐TA. On the other hand, both the tensile modulus and strength of GPE‐TA/WF were much higher than those of GPE‐TA (2.4 GPa and 37 MPa). Those values of GPE‐TA/WF increased with WF content, became maximal values (5.1 GPa and 51 MPa) at WF content 60 wt %, and were lowered at 70 wt %. FE‐SEM analysis of the fractured surface of the biocomposites revealed that WF is tightly incorporated into the crosslinked epoxy resins. As a result of optimization of the epoxy/hydroxyl molar ratio for GPE‐TA/WF composite with WF content 60 wt %, the composite prepared at the ratio of 1.0/0.8 showed the highest tensile modulus and strength. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
2.
The reaction of pyrogallol (PG) and vanillin (VN), both of which are derived from plant resources, in the presence of p‐toluenesulfonic acid gave PG–VN calixarene (PGVNC) mainly composed of guaiacyl pyrogallol[4]arene. After sorbitol polyglycidyl ether (SPE) was mixed with PGVNC in tetrahydrofuran at an optimized epoxy/hydroxy ratio 1/2.65, the obtained SPE/PGVNC solution was mixed with wood flour (WF), prepolymerized at 150°C, and subsequently compressed at 190°C for 3 h to give SPE–PGVNC/WF biocomposites with WF content 0–20 wt%. The tan δ peak temperature of SPE–PGVNC was 148.1°C, which was much higher than that of the SPE cured with petroleum‐based phenol novolac (SPE–PN) at an optimized epoxy/hydroxy ratio 1/1. Although tan δ peak temperature slightly decreased with increasing WF content, the storage moduli of the SPE–PGVNC/WF biocomposites in the rubbery state at more than 150°C were much higher than those of SPE–PGVNC and SPE–PN. Also, the tensile modulus and strength for SPE–PGVNC/WF increased with increasing WF content. Field emission‐scanning electron microscopy analysis of the biocomposites revealed that WF is tightly incorporated into the crosslinked epoxy resins. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers 相似文献
3.
Glycerol polyglycidyl ether (GPE) and polyglycerol polyglycidyl ether (PGPE) were cured with ε‐poly(L ‐lysine) (PL) using epoxy/amine ratios of 1 : 1 and 2 : 1 to create bio‐based epoxy cross‐linked resins. When PGPE was used as an epoxy resin and the epoxy/amine ratio was 1 : 1, the cured neat resin showed the greatest glass transition temperature (Tg), as measured by differential scanning calorimetry. Next, the mixture of PGPE, PL, and montomorillonite (MMT) at an epoxy/amine ratio of 1 : 1 in water was dried and cured finally at 110°C to create PGPE‐PL/MMT composites. The X‐ray diffraction and transmission electron microscopy measurements revealed that the composites with MMT content 7–15 wt % were exfoliated nanocomposites and the composite with MMT content 20 wt % was an intercalated nanocomposite. The Tg and storage modulus at 50–100°C for the PGPE‐PL/MMT composites measured by DMA increased with increasing MMT content until 15 wt % and decreased at 20 wt %. The tensile strength and modulus of the PGPE‐PL/MMT composites (MMT content 15 wt %: 42 and 5300 MPa) were much greater than those of the cured PGPE‐PL resin (4 and 6 MPa). Aerobic biodegradability of the PGPE‐PL in an aqueous medium was ~ 4% after 90 days, and the PGPE‐PL/MMT nanocomposites with MMT content 7–15 wt % showed lower biodegradability. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
4.
After cedar‐derived wood flour (WF) and bark flour (BF) were mixed with 1‐butyl‐3‐methylimidazolium chloride (BMIC) at 100°C, the obtained compounds with BMIC content 40 wt % were compression‐molded at 210°C to give WF/BMIC and BF/BMIC composites, respectively. The BMIC contained in the composites was twice extracted with ethanol at 60°C to afford WF/BMIC‐E and BF/BMIC‐E biocomposites, which were subsequently annealed at 200°C for 24 h to produce WF/BMIC‐A and BF/BMIC‐A biocomposites. The Fourier transform infrared spectroscopic analysis revealed that WF has a higher content of cellulose and a lower content of lignin than BF does, and that the BMIC content diminished by the extraction process. The scanning electron microscopy analysis showed that woody particles joined together by the compression molding of WF/BMIC and BF/BMIC compounds, and that the extraction of BMIC roughened the surface and the annealing again smoothed the surface due to the fusion of the residual BMIC and woody particles. The XRD measurements indicated that the annealing enhanced the crystallinity of cellulose component. The tensile properties and 5% weight loss temperature of the biocomposites were considerably improved by the extraction of BMIC and further by the annealing. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
5.
The thermal and mechanical behavior of new natural polymeric composite materials after exposure to humid environments must be well known and understood in order to predict their performance in final applications. For this reason, composites made from unsaturated polyesters based on linseed oil and filled with wood flour were exposed to environments of different relative humidities and their final properties were measured. In general, the equilibrium moisture content increased as the wood flour percentage increased. Dynamic mechanical tests performed in temperature scan mode were carried out in order to monitor the changes resulting from moisture absorption on the main transition temperature of the matrix (Tα). The temperature of this transition decreased as the amount of absorbed water increased, but the effect was partially reversible by re‐drying the samples. The mechanical properties were also strongly affected by moisture. The flexural modulus and ultimate stress of the composites decreased after equilibration in humid environments. Copyright © 2006 Society of Chemical Industry 相似文献
6.
Guaiacol novolak (GCN) and wood‐tar creosote novolak (WCN) were synthesized by the reactions of wood‐derived guaiacol and creosote with formalin, respectively, and used as hardeners of sorbitol polyglycidyl ether (SPE). Thermal and mechanical properties of the cured resins (SPE‐GCN and SPE‐WCN) and their biocomposites with wood flour (WF) were compared with those of the materials prepared by using a petroleum‐based phenol novolak (PN). Although tan δ peak temperatures of SPE‐GCN and SPE‐WCN were lower than that of SPE‐PN, that (58.5–70.8°C) of SPE‐GCN/WF(40–50 wt %) was higher than that (56.6–57.0°C) of SPE‐PN/WF(40–50 wt %). Tensile moduli of all the biocomposites increased by the addition of WF, while tensile strengths were rather reduced. When the biocomposites with the same WF content were compared, tensile modulus of SPE‐GCN/WF was higher than that of SPE‐PN/WF. The 5% weight loss temperatures (346–291°C) of SPE‐GCN and SPE‐GCN/WF were comparable to those (338–284°C) of SPE‐PN and SPE‐PN/WF. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41347. 相似文献
7.
As a new biobased epoxy resin system, epoxidized soybean oil (ESO) was cured with tannic acid (TA) under various conditions. When the curing conditions were optimized for the improvement of the thermal and mechanical properties, the most balanced properties were obtained when the system was cured at 210°C for 2 h at an epoxy/hydroxyl ratio of 1.0/1.4. The tensile strength and modulus and tan δ peak temperature measured by dynamic mechanical analysis for the ESO–TA cured under the optimized condition were 15.1 MPa, 458 MPa, and 58°C, respectively. Next, we prepared biocomposites of ESO, TA, and microfibrillated cellulose (MFC) with MFC contents from 5 to 11 wt % by mixing an ethanol solution of ESO and TA with MFC and subsequently drying and curing the composites under the optimized conditions. The ESO–TA–MFC composites showed the highest tan δ peak temperature (61°C) and tensile strength (26.3 MPa) at an MFC content of 9 wt %. The tensile modulus of the composites increased with increasing MFC content and reached 1.33 GPa at an MFC content of 11 wt %. Scanning electron microscopy observation revealed that MFC was homogeneously distributed in the matrix for the composite with an MFC content of 9 wt %, whereas some aggregated MFC was observed in the composite with 11 wt % MFC. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
8.
Ethanolamine and L ‐arginine treated wood flour were added to polyvinyl chloride (PVC) in order to improve the interphase between PVC and wood. The influence of the treatment on pH‐value changes and nitrogen fixation of the wood and mechanical properties of the composite were evaluated. The treatments changed the pH of wood from acidic to basic. The highest nitrogen fixation was measured for monoethanolamine and L ‐arginine treated wood flour at high concentrations. Tensile strength, elongation at break, and unnotched impact strength were improved by ethanolamine and L ‐arginine treatments considerably. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
9.
Thermal and mechanical properties of tetra‐functional mesogenic type epoxy resin cured with aromatic amine 下载免费PDF全文
A novel tetra‐functional epoxy monomer with mesogenic groups was synthesized and characterized by 1H‐NMR and FTIR. The synthesized epoxy monomer was cured with aromatic amine to improve the thermal property of epoxy/amine cured system. The glass transition temperature (Tg) and coefficient of thermal expansion (CTE) of the cured system were investigated by dynamic mechanical analysis and thermal mechanical analysis. The properties of the cured system were compared with the conventional bisphenol‐A type epoxy and mesogenic type epoxy system. The storage modulus of the tetra‐functional mesogenic epoxy cured systems showed the value of 0.96 GPa at 250 °C, and Tg‐less behavior was clearly observed. The cured system also showed a low CTE at temperatures above 150 °C without incorporation of inorganic components. These phenomena were achieved by suppression of the thermal motion of network chains by introduction of both mesogenic groups and branched structure to increase the cross linking density. The temperature dependency of the tensile property and thermal conductivity of the cured system was also investigated. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46181. 相似文献
10.
Diacrylate compounds derived from α‐pinene and limonene (TDAs: TDA‐1 and TDA‐2) were photocured with methacryl‐substituted polysilsesquioxane (ME‐PSQ) prepared from 3‐(trimethoxysilyl)propyl methacrylate and tetramethylammonium hydroxide (TMAOH) in the TDA/ME‐PSQ weight ratio of 20 : 0, 20 : 1, 20 : 2, 20 : 3, and 20 : 4. All the photocured TDA/ME‐PSQ hybrid nanocomposites became transparent. The thermomechanical analysis of the cured TDA/ME‐PSQ revealed that the glass transition temperature (Tg) increased, the thermal expansion coefficient above Tg decreased with increasing ME‐PSQ content, and that the TDA‐1/ME‐PSQ had ca. 30°C greater Tg than the TDA‐2/ME‐PSQ with the same ME‐PSQ content. Also, the dynamic mechanical analysis revealed that the TDA‐1/ME‐PSQ had much greater storage modulus at around 150°C than the corresponding TDA‐2/ME‐PSQ. The flexural strength and modulus of the TDA/ME‐PSQ nanocomposites at 20°C had maximum at ME‐PSQ content 4.8 and 13.0 wt %, respectively. As a whole, the thermal and mechanical properties of the nanocomposites were improved by the addition of ME‐PSQ, and those of TDA‐1/ME‐PSQ nanocomposites were superior to those of TDA‐2/ME‐PSQ. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
11.
Green composites were produced from various cationically cured natural oil‐based resins and agricultural fibers. The natural oils and agricultural fibers of interest included corn, soybean, fish, and linseed oils and corn stover, wheat straw (WS), and switchgrass fibers. The effects of the types of natural oil and agricultural fiber on the structure and thermal and mechanical properties of the composites were studied using Soxhlet extraction, thermogravimetric and dynamic mechanical analysis, and tensile testing. The green composites, with agricultural fiber loadings of 75 wt %, have thermal stabilities up to 275°C. The Young's moduli and tensile strengths of the composites ranged from 1590 to 2300 and 5.5 to 11.3 MPa, respectively. In general, an increase in the degree of unsaturation of the natural oil resulted in improvements in the thermal and mechanical properties of the composites. The WS fibers tended to give composites with the best thermal and mechanical properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
12.
Three kinds of surface treatment, that is, the alkalization (5% w/v NaOH aqueous solution), the deposition of diglycidyl ether of bisphenol A (DGEBA) from toluene solution (1% w/v DGEBA), and the alkalization combined with the deposition of DGEBA (5% w/v NaOH/1% w/v DGEBA) were applied to modify interfacial bonding and to enhance mechanical properties of pineapple leaf fiber (PALF) reinforced epoxy composites. The fiber strength and strain were measured by single fiber test and the fiber strength variation was assessed using Weibull modulus. Furthermore, a fragmentation test was used to quantify the interfacial adhesion of PALF‐epoxy composite. It was verified that the interfacial shear strength of modified PALFs was substantially higher than that of untreated PALF by almost 2–2.7 times because of the greater interaction between the PALFs and epoxy resin matrix. The strongest interfacial adhesion was obtained from the fibers that had been received the alkalization combined with DGEBA deposition. Moreover, the flexural and impact properties of unidirectional PALF‐epoxy composites were greatly enhanced when reinforced with the modified PALFs due to an improvement in interfacial adhesion, particularly in the synergetic use of 5% NaOH and 5% NaOH/1% DGEBA. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
13.
Marcus Müller Itana Radovanovic Timo Grüneberg Holger Militz Andreas Krause 《应用聚合物科学杂志》2012,125(1):308-312
Aminosilane, melamine and acetic anhydride treated wood flour were added to polyvinyl chloride (PVC) in order to process improved PVC/wood flour composites. The influence of wood treatment on water absorption and mechanical properties were evaluated. Treatments with amino-alkyl functional oligomeric siloxane and melamine in suitable concentration as well as acetylated wood flour composites showed decreased equilibrium moisture content and reduced speed of water absorption. Tensile strength, elongation at break and unnotched impact strength were considerably improved by the aminosilane treatments. The increase in strength and elongation was mainly influenced by the chemical structure and concentration of the used aminosilanes. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
14.
Polypropylene‐based composites containing sorbitol‐based nucleating agent and siloxane‐silsesquioxane resin 下载免费PDF全文
Monika Dobrzyńska‐Mizera Michał Dutkiewicz Tomasz Sterzyński Maria Laura Di Lorenzo 《应用聚合物科学杂志》2016,133(22)
Composites based on isotactic polypropylene (iPP) modified with a sorbitol derivative (NX8000) and siloxane‐silsesquioxane resin containing reactive phenyl groups (SiOPh) were prepared by melt extrusion. These iPP‐based formulations were investigated to evaluate the influence of such additives on the crystallization behavior and morphology, as well as on thermal and mechanical properties. The addition of sorbitol fastens crystallization kinetics of iPP and leads to higher transparency of iPP films. Upon the incorporation of siloxane‐silsesquioxane resin, no further effect on iPP crystallization kinetics is evidenced by calorimetry, optical microscopy, and X‐ray diffraction analysis. Transparency of iPP‐based composites is improved upon the addition of sorbitol, but decreased when SiOPh is added to the formulation. The composites are also stiffer, compared to neat polypropylene with a decreased elongation at break and increased Young's modulus values, with increasing amounts of fillers. The effect of the siloxane‐silsesquioxane resin on properties of iPP/NX8000/SiOPh composites was explained taking into account compatibility of the components and morphology of the composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43476. 相似文献
15.
A potentially inexpensive alternative epoxy resin system based on soybean oil has been developed for polymer composite applications. Epoxidized methyl soyate (EMS) and epoxidized allyl soyate (EAS) have been synthesized at the University of Missouri–Rolla. These materials consist of mixtures of epoxidized fatty acid esters. The epoxidized soy‐based resins provide better intermolecular crosslinking and yield materials that are stronger than materials obtained with commercially available epoxidized soybean oil (ESO). The curing behavior and glass transition have been monitored with differential scanning calorimetry. Neat resin test samples have been fabricated from resin systems containing various amounts of EMS, EAS, and ESO. Standardized tests have shown that the addition of EAS enhances the tensile and flexural properties of the base epoxy resin system. Therefore, epoxidized soy ester additives hold great potential for environmentally friendly and lower cost raw materials for the fabrication of epoxy composites for structural applications. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3513–3518, 2004 相似文献
16.
A linear low‐density polyethylene (LLDPE) matrix was modified with an organic peroxide and by a reaction with maleic anhydride (MAn) and was simultaneously compounded with untreated wood flour in a twin‐screw extruder. The thermal and mechanical properties of the modified LLDPE and the resulting composites were evaluated. The degree of crystallinity was reduced in the modified LLDPE, but it increased with the addition of wood flour for the formation of the composites. Significant improvements in the tensile strength, ductility, and creep resistance were obtained for the MAn‐modified composites. This enhancement in the mechanical behavior could be attributed to an improvement in the compatibility between the filler and the matrix. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2775–2784, 2003 相似文献
17.
Diène Ndiaye Laurent M. Matuana Sandrine Morlat‐Therias Loïc Vidal Adams Tidjani Jean‐Luc Gardette 《应用聚合物科学杂志》2011,119(6):3321-3328
In this research, polypropylene/wood‐flour composites (WPCs) were blended with different contents of wood and/or maleated polypropylene (MAPP) and clay. We found that the addition of MAPP or clay in the formulation greatly improved the dispersion of the wood fibers in the composite; this suggested that MAPP or clay may have played the role of an adhesion promoter in the WPCs. The results obtained with clay indicate that it also acted as a flame retardant. The thermal tests carried out with the produced samples showed an increased crystallization temperature (Tc), crystallinity, and melting temperature (Tm) with wood loading. The increase of the two former parameters was explained by the incorporation of wood flour, which played the role of nucleating agent and induced the crystallization of the matrix polymer. On the other hand, the Tm increase was ascribed to the insulating properties of wood, which hindered the movement of heat conduction. The effects of UV irradiation on Tm and Tc were also examined. Tc increased with UV exposure time; this implied that UV degradation generated short chains with low molecular weight that could move easily in the bulk of the sample and, thus, catalyze early crystallization. The flexural strength and modulus increased with increasing wood‐flour content. In contrast, the impact strength and tensile strength and strain decreased with increasing wood‐flour content. All of these changes were related to the level of dispersion of the wood flour in the polymeric matrix. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
18.
This article presents the results of a study of the processing and physicomechanical properties of environmentally friendly wood‐fiber‐reinforced poly(lactic acid) composites that were produced with a microcompounding molding system. Wood‐fiber‐reinforced polypropylene composites were also processed under similar conditions and were compared to wood‐fiber‐reinforced poly(lactic acid) composites. The mechanical, thermomechanical, and morphological properties of these composites were studied. In terms of the mechanical properties, the wood‐fiber‐reinforced poly(lactic acid) composites were comparable to conventional polypropylene‐based thermoplastic composites. The mechanical properties of the wood‐fiber‐reinforced poly(lactic acid) composites were significantly higher than those of the virgin resin. The flexural modulus (8.9 GPa) of the wood‐fiber‐reinforced poly(lactic acid) composite (30 wt % fiber) was comparable to that of traditional (i.e., wood‐fiber‐reinforced polypropylene) composites (3.4 GPa). The incorporation of the wood fibers into poly(lactic acid) resulted in a considerable increase in the storage modulus (stiffness) of the resin. The addition of the maleated polypropylene coupling agent improved the mechanical properties of the composites. Microstructure studies using scanning electron microscopy indicated significant interfacial bonding between the matrix and the wood fibers. The specific performance evidenced by the wood‐fiber‐reinforced poly(lactic acid) composites may hint at potential applications in, for example, the automotive and packaging industries. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4856–4869, 2006 相似文献
19.
Thermoset composites were produced from flax fibers and a novel lactic acid (LA)‐based thermoset resin. This resin is based on methacrylated, star‐shaped oligomers of LA. The main purpose of this work was to evaluate whether this resin can be used to produce structural composites from flax fibers. Composites were prepared by spray impregnation followed by compression molding at elevated temperature. The tests showed that composites can be produced with as much as 70 wt% fiber. The composites were evaluated by tensile testing, flexural testing, charpy impact test, dynamic mechanical thermal analysis (DMTA), and low‐vacuum scanning electron microscopy. The ageing properties in high humid conditions were evaluated, the Young's modulus ranged from 3 GPa to 9 GPa in the best case. This work shows that structural composites can be produced from renewable material. It is clear from the results that these composites have properties that make them suitable for furniture, panels, or automotive parts. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
20.
Short ramie fiber (RF) was used to reinforce the polypropylene (PP). The composites were prepared in a twin‐screw extruder followed by injection molding. The experimental results showed that both the strength and the modulus of the composites increase considerably with increasing RF content. The tensile strength and flexural strength are as high as 67 and 80 MPa by the incorporation of ramie up to 30 wt %. To the best of our knowledge, this is one of the best results for short natural fiber‐reinforced PP composites. However, the preparation method in this study is more simple and economic. This short RF‐reinforced PP composites extend the application field for short‐nature fiber‐reinforced PP composites. Morphological analysis revealed that it is the high aspect ratio of the fiber and good interfacial compatibility that result in the high performance of the composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献