首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the study was to investigate the mechanical properties and biodegradability of poly(trimethylenecarbonate‐ε‐caprolactone)‐block‐poly(p‐dioxanone) [P(TMC‐ε‐CL)‐block‐PDO] in comparison with poly(p‐dioxanone) and poly(glycolide‐ε‐caprolactone) (Monocryl®) monofilaments in vivo and in vitro. P(TMC‐ε‐CL)‐block‐PDO copolymer and poly(p‐dioxanone) were prepared by using ring‐opening polymerization reaction. The monofilament fibers were obtained using conventional melt spun methods. The physicochemical and mechanical properties, such as viscosity, molecular weight, crystallinity, and knot security, were studied. Tensile strength, breaking strength retention, and surface morphology of P(TMC‐ε‐CL)‐block‐PDO, poly(p‐dioxanone), and Monocryl monofilament fibers were studied by immersion in phosphate‐buffered distilled water (pH 7.2) at 37°C and in vivo. The implantation studies of absorbable suture strands were performed in gluteal muscle of rats. The polymers, P(TMC‐ε‐CL)‐block‐PDO, poly(p‐dioxanone), and Monocryl, were semicrystalline and showed 27, 32, and 34% crystallinity, respectively. Those mechanical properties of P(TMC‐ε‐CL)‐block‐PDO were comparatively lower than other polymers. The biodegradability of poly(dioxanone) homopolymer is much slower compared with that of two copolymers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 737–743, 2006  相似文献   

2.
Nuclear magnetic resonance spectroscopy (NMR) characterization of the statistical copolymers of this study showed that the poly(ε‐caprolactone‐co‐L‐lactide)s, with ε‐caprolactone (ε‐CL) molar contents ranging from 70 to 94% and ε‐CL average sequence length (lCL) between 2.20–9.52, and the poly(ε‐caprolactone‐co‐δ‐valerolactone)s, with 60 to 85% of ε‐CL and lCL between 2.65–6.08, present semi‐alternating (R→2) and random (R~1) distribution of sequences, respectively. These syntheses were carried out with the aim of reducing the crystallinity of poly(ε‐caprolactone) (PCL), needed to provide mechanical strength to the material but also responsible for its slow degradation rate. However, this was not achieved in the case of the ε‐caprolactone‐co‐δ‐valerolactone (ε‐CL‐co‐δ‐VAL). Non‐isothermal cooling treatments at different rates and isothermal crystallizations (at 5, 10, 21 and 37°C) were conducted by differential scanning calorimetry (DSC), and demonstrated that ε‐CL copolymers containing δ‐valerolactone (δ‐VAL) exhibited a larger crystallization capability than those of L‐lactide (L‐LA) and also arranged into crystalline structures over shorter times. The crystallization enthalpies of the ε‐CL‐co‐δ‐VAL copolymers during the cooling treatments and their heat of fusion (ΔHm) at the different isothermal temperatures were very large (i.e. ΔHc > 53 Jg?1) and in some cases, unrelated to the copolymer composition. In some compositions, such as the 60 : 40, Wide Angle X‐ray Scattering (WAXS) proved that that these two lactones undergo isomorphism and co‐crystallize in a single cell. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42534.  相似文献   

3.
Poly(p‐dioxanone)–poly(ethylene glycol)–poly(p‐dioxanone) ABA triblock copolymers (PEDO) were synthesized by ring‐opening polymerization from p‐dioxanone using poly(ethylene glycol) (PEG) with different molecular weights as macroinitiators in N2 atmosphere. The copolymer was characterized by 1H NMR spectroscope. The thermal behavior, crystallization, and thermal stability of these copolymers were investigated by differential scanning calorimetry and thermogravimetric measurements. The water absorption of these copolymers was also measured. The results indicated that the content and length of PEG chain have a greater effect on the properties of copolymers. This kind of biodegradable copolymer will find a potential application in biomedical materials. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:1092–1097, 2006  相似文献   

4.
The miscibility, crystallization kinetics and crystalline morphology of a new system of poly(vinylidene fluoride)/poly(?‐caprolactone)‐block‐poly(dimethylsiloxane)‐block‐poly(?‐caprolactone) (PVDF/PCL‐b‐PDMS‐b‐PCL) triblock copolymer were investigated by a variety of techniques. The miscibility and phase behaviour of PVDF/PCL‐b‐PDMS‐b‐PCL were studied by determination of the melting point temperature, crystallization kinetics and Fourier transform infrared (FTIR) mapping. Chemical imaging was used as a new technique to characterize the interaction of polymer blends in crystalline morphology. The results demonstrate the existence of characteristic peaks of both PVDF and PCL in the chosen crystalline area. The crystalline structures of PVDF were affected by the PCL‐b‐PDMS‐b‐PCL triblock copolymer and facilitate the formation of the β polymorph which was illustrated by FTIR analysis. The β crystal phase fraction increases significantly on increasing the composition of the PCL‐b‐PDMS‐b‐PCL triblock copolymer. In addition, confined crystallization of PCL within PVDF inter‐lamellar and/or inter‐fibrillar regions was confirmed through polarizing optical microscopy, wide‐angle X‐ray diffraction and small‐angle X‐ray scattering analysis. © 2019 Society of Chemical Industry  相似文献   

5.
Two series of poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) triblock copolymers were prepared by the ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) and dibutylmagnesium in 1,4‐dioxane solution at 70°C. The triblock structure and molecular weight of the copolymers were analyzed and confirmed by 1H NMR, 13C NMR, FTIR, and gel permeation chromatography. The crystallization and thermal properties of the copolymers were investigated by wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC). The results illustrated that the crystallization and melting behaviors of the copolymers were depended on the copolymer composition and the relative length of each block in copolymers. Crystallization exothermal peaks (Tc) and melting endothermic peaks (Tm) of PEG block were significantly influenced by the relative length of PCL blocks, due to the hindrance of the lateral PCL blocks. With increasing of the length of PCL blocks, the diffraction and the melting peak of PEG block disappeared gradually in the WAXD patterns and DSC curves, respectively. In contrast, the crystallization of PCL blocks was not suppressed by the middle PEG block. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Poly(ε‐caprolactone)/poly(ε‐caprolactone‐co‐lactide) (PCL/PLCL) blend filaments with various ratios of PCL and PLCL were prepared by melt spinning. The effect of PLCL content on the physical properties of the blended filament was investigated. The melt spinning of the blend was carried out and the as spun filament was subsequently subjected to drawing and heat setting process. The addition of PLCL caused significant changes in the mechanical properties of the filaments. Crystallinity of blend decreased with the addition of PLCL as observed by X‐ray diffraction (XRD) and differential scanning calorimetry (DSC). Scanning electron microscopy (SEM) revealed that the fracture surface becomes rougher at higher PLCL content. It may be proposed that PCL and PLCL show limited interaction within the blend matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
A study was made of the effects of the initial ibuprofen load and of the specimen shape on the release of ibuprofen from poly(ε‐caprolactone‐co‐D,L ‐lactide). The mol ratio of the comonomers in the copolymer was 96/4 (caprolactone to lactide) and the experiments were conducted at 37°C in vitro. The results showed that release of ibuprofen is fast and that the rate and profile of the release vary with both the initial load of ibuprofen and the shape of the specimen. The rate of ibuprofen release increases with the initial load and with the surface area‐to‐volume ratio of the specimen, obeying Fickian diffusion. The experimental findings were compared with the results of a mathematical simulation model based on the finite‐difference method. Diffusion parameters needed for the simulation were determined from a separately conducted set of experiments using various methods. For the most part, the results of the simulations and the experiments were in good agreement. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1279–1288, 2003  相似文献   

8.
A series of triblock co‐polymers, consisting of a poly(ethylene glycol) (PEG) central block joined to two blocks of random p‐dioxanone‐co‐L ‐lactide copolymers were synthesized by ring‐opening polymerization of p‐dioxanone (PDO) and L ‐lactide (LLA) initiated by PEG in the presence of stannous 2‐ethylhexanoate catalyst. The resulting copolymers were characterized by various techniques including 1H and 13C NMR and FTIR spectroscopies, gel permeation chromatography, inherent viscosity, wide‐angle X‐ray diffractometry (WAXD) and differential scanning calorimetry (DSC). The conversion of PDO and L ‐lactide into the polymer was studied various mole ratios and at different polymerization temperature from 1H NMR spectra. Results of WAXD and DSC showed that the crystallinity of PEG macroinitiator was greatly influenced by the composition of PDO and L ‐lactide in the copolymer. The triblock copolymers with low molecular weight were soluble in water at below room temperature. © 2003 Society of Chemical Industry  相似文献   

9.
This article describes the compatibility of two semicrystalline polymers, poly(ε‐caprolactone) (PCL) and poly(l‐lactic acid) (PLLA). The compatibility of the PCL/PLLA blends was enhanced by the compatibilizing effect of the poly(l,l‐lactide‐co‐ε‐caprolactone) [P(lLA‐co‐εCL)]. A discussion details the effect of the concentration of the compatibilizing agent, the copolymer of l,l‐lactide and ε‐caprolactone of a 50/50 mol ratio [P(lLA‐co‐εCL)], on the compatibility and the crystallization behavior of the blends of PCL and PLLA. It was found that the addition of P(lLA‐co‐εCL) could suppress the crystallization of PLLA at its Tc and induced the concurrent crystallization of PLLA and PCL. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 226–231, 2000  相似文献   

10.
With the aim to develop novel biodegradable materials with good flexibility and fast degradation rate, random copolymers of ?‐caprolactone (CL) and p‐dioxanone (PDO) with a full range of compositions were synthesized in bulk using stannous octoate as the ring‐opening catalyst. The chemical composition and number average sequence lengths of CL and PDO units determined by 1H‐NMR were used to correlate with various properties of the copolymers. Although both CL and PDO are crystalline components, only one crystalline phase could be present for each copolymer. The low limit of average block length for the copolymers that could crystallize is 3.22 for LCL and 3.43 for LPDO, respectively. The crystallinity and crystalline morphology of the copolymers are dependent on the crystalline component as well as its number average sequence length. Irrespective of composition, all the copolymers have good solubility in chloroform with glass transition temperature much below room temperature, implying good flexibility of the materials. The incorporation of PDO component could significantly increase the water wettability of the copolymer surfaces and thereby accelerate the degradation rate of the materials. In conclusion, flexible biodegradable polymers with adjustable degradation and crystalline properties were acquired by random copolymerization of CL and PDO, which are expected to use in tissue engineering and drug delivery fields. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2978–2986, 2013  相似文献   

11.
Poly(vinyl pyrrolidone‐co‐vinyl acetate)‐graft‐poly(ε‐caprolactone) (PVPVAc‐g‐PCL) was synthesized by radical copolymerization of N‐vinyl‐2‐pyrrolidone (VP)/vinyl acetate (VAc) comonomer and PCL macromonomer containing a reactive 2‐hydroxyethyl methacrylate terminal. The graft copolymer was designed in order to improve the interfacial adhesiveness of an immiscible blend system composed of cellulose acetate/poly(ε‐caprolactone) (CA/PCL). Adequate selections of preparation conditions led to successful acquisition of a series of graft copolymer samples with different values of molecular weight ( ), number of grafts (n), and segmental molecular weight of PVPVAc between adjacent grafts (Mn (between grafts)). Differential scanning calorimetry measurements gave a still immiscible indication for all of the ternary blends of CA/PCL/PVPVAc‐g‐PCL (72 : 18 : 10 in weight) that were prepared by using any of the copolymer samples as a compatibilizer. However, the incorporation enabled the CA/PCL (4 : 1) blend to be easily melt‐molded to give a visually homogeneous film sheet. This compatibilizing effect was found to be drastically enhanced when PVPVAc‐g‐PCLs of higher and Mn (between grafts) and lower n were employed. Scanning electron microscopy revealed that a uniform dispersion of the respective ingredients in the ternary blends was attainable with an assurance of the mixing scale of several hundreds of nanometers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Poly(ethylene glycol)‐octafunctionalized polyhedral oligomeric silsesquioxane (POSS) (Mn = 5576.6 g/mol) alloying agent stabilized amphiphilic silica@silver metalloid nanocomposite blended with a triblock copolymer poly(p‐dioxanone‐co‐caprolactone)‐block‐poly(ethylene oxide)‐block‐poly(p‐dioxanone‐co‐caprolactone) (POSS‐SiO2@Ag/PPDO‐co‐PCL‐b‐PEG‐b‐PPDO‐co‐PCL) has been synthesized in both water and in organic medium utilizing ultrasonochemical reaction. The POSS stabilized pre‐made metalloid was successfully dispersed in amphiphilic PPDO‐co‐PCL‐b‐PEG‐b‐PPDO‐co‐PCL (ABA) triblock copolymer matrix of molecular weight 45.9 × 104 g/mol. The mechanism of synthesis of high concentration of SiO2@Ag nanocomposite from TEOS/AgNO3 (in the presence of NH4OH as catalyst/NaBH4 as reductant) nonmetal/metal precursors and the successful EISA of POSS‐SiO2@Ag/ABA nanocomposite into films has been discussed. The successful synthesis of metalloid nanocomposite was morphologically accessed by field emission‐scanning electron microscopy, transmission electron microscopy and atomic force microscopy. Surface plasmon resonance was ensured from UV–visible spectral analysis. Identity and the crystallinity of as prepared nanocomposite were studied by X‐ray diffractometer. Structural and luminescence properties of the nanocomposite were examined by Fourier transform infrared spectroscopy and photoluminescence. Thermogravimetric analysis was carried out to study the thermal stability of the resulting hybrid nanocomposite. The resultant inorganic–organic nanocomposite can be easily suspended in water and would be useful in variety of applications. POLYM. COMPOS., 31:1620–1627, 2010. © 2009 Society of Plastics Engineers  相似文献   

13.
Poly(l ‐lactide‐co‐ε‐caprolactone‐diOH) (PCLA) with (ABA)n type is synthesized using poly(lactic acid) (PLA) and poly(ε‐caprolactone) di‐OH (PCL‐diOH) via chain extending method. FT‐IR, 1H‐NMR, and GPC data demonstrate that PLA and PCL‐diOH have reacted completely. The product is electrospun into ultrafine fibers subsequently. The optimum electrospinning parameters obtain from an orthogonal experiment are a solvent ratio (DMF/DCM) of 5/5, a polymer concentration of 28 wt %, a collector distance of 20 cm and a voltage of 18 kV. As a result, the average diameter of fibers is 0.77 µm and the uniformity is above 80%. Via range analysis, it is found that the order of the influence on diameter is solvent ratio, applied voltage, collector distance, and polymer concentration, successively. Single effect of the four governing factors on diameter and morphology is also experimentally investigated. This may provide clues for obtaining fibers with various structures by controlling the parameters. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3600–3610, 2013  相似文献   

14.
Novel polyesters, poly[(ε‐caprolactone)‐co‐(N‐trityl‐L ‐serine‐β‐lactone)]s, were prepared by copolymerizing ε‐caprolactone (CL) with N‐trityl‐L ‐serine‐β‐lactone (TSL) using ZnEt2 as the catalyst. The number‐average molecular weights were determined which ranged from 2.7 × 104 to 4.9 × 104 Da with dispersity values ranging from 1.6 to 1.8. The structures of the copolymers were investigated by means of 1H NMR, 13C NMR and infrared spectroscopies, thermogravimetric analysis and differential scanning calorimetry. The results indicated that CL and TSL monomer units were randomly distributed within the copolymer backbone structures and the ratios of TSL to CL in the copolymers were close to those in the feeds. After removal of the trityl group under mild condition, a new polyester with side amino groups provided by serine units was obtained. L929 cell culturing test indicated good biocompatibility of the polyester with or without protective groups. © 2012 Society of Chemical Industry  相似文献   

15.
The effect of poly(D ,L ‐lactide‐copara‐dioxanone) (PLADO) as the compatibilizer on the properties of the blend of poly(para‐dioxanone) (PPDO) and poly(D ,L ‐lactide) (PDLLA) has been investigated. The 80/20 PPDO/PDLLA blends containing from 1% to 10% of random copolymer PLADO were prepared by solution coprecipitation. The PLADO component played a very important role in determining morphology, thermal, mechanical, and hydrophilic properties of the blends. Addition of PLADO into the blends could enhance the compatibility between dispersed PDLLA phase and PPDO matrix; the boundary between the two phases became unclear and even the smallest holes were not detected. On the other hand, the position of the Tg was composition dependent; when 5% PLADO was added into blend, the Tg distance between PPDO and PDLLA was shortened. The blends with various contents of compatibilizer had better mechanical properties compared with simple PPDO/PDLLA binary polymer blend, and such characteristics further improved as adding 5% random copolymers. The maximum observed tensile strength was 29.05 MPa for the compatibilized PPDO/PDLLA blend with 5% PLADO, whereas tensile strength of the uncompatibilized PPDO/PDLLA blend was 14.03 MPa, which was the lowest tensile strength. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
A series of biodegradable poly(L ‐lactide‐co‐?‐caprolactone) (PCLA) copolymers with different chemical compositions are synthesized and characterized. The mechanical properties and shape‐memory behaviors of PCLA copolymers are studied. The mechanical properties are significantly affected by the copolymer compositions. With the ?‐caprolactone (?‐CL) content increasing, the tensile strength of copolymers decreases linearly and the elongation at break increases gradually. By means of adjusting the compositions, the copolymers exhibit excellent shape‐memory effects with shape‐recovery and shape‐retention rate exceeding 95%. The effects of composition, deformation strain, and the stretching conditions on the recovery stress are also investigated systematically. A maximum recovery stress around 6.2 MPa can be obtained at stretching at Tg ? 15°C to 200% deformation strain for the PCLA70 copolymer. The degradation results show that the copolymers with higher ?‐CL content have faster degradation rates and shape‐recovery rates, meanwhile, the recovery stress can maintain a relative high value after 30 days in vitro degradation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
A novel biodegradable copolyester poly(ε‐caprolactone‐co‐d ,l ‐lactide) with four pendent functional groups was designed and synthesized. The synthetic route includes the following three steps: (1) synthesis of OH‐terminated PCLA (PCLA‐OH) by the ring‐opening copolymerization of ε‐caprolactone and d ,l ‐lactide; (2) end‐group functionalization of PCLA‐OH through the esterification with lysine; and (3) synthesis of tetra‐amino‐terminated PCLA (PCLA‐NH2) by removing the protecting groups. The composition, structure, and thermal property of these copolyesters were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and modulated differential scanning calorimetry. Results revealed that the molecular weight and glass transition temperature of PCLA‐NH2 can be tailored by the careful selection of synthesis parameters. Moreover, polyester elastomers based on PCLA‐NH2 were synthesized and characterized. These polyester elastomers are stabilized in their rubbery state in room temperature and exhibit tunable physiochemical and mechanical properties. POLYM. ENG. SCI., 54:2170–2176, 2014. © 2013 Society of Plastics Engineers  相似文献   

18.
Poly(caprolactone‐co‐glycolide)‐co‐poly(ethylene gylcol) copolymers (PCEG) with various composition were synthesized by copolymerization of GA, CL, and PEG. PCEG microspheres were fabricated by oil‐in‐water (o/w) emulsion and solvent‐evaporation technique. Effect of chemical composition on hydrophilicity, crystallinity, and degradation of the PCEG was investigated. It was demonstrated that morphology structure of the microspheres was greatly influenced by chemical composition and hydrophilicity of the PCEG polymer. PCEG microspheres could change from a smooth structure to a regular porous structure and an irregular structure. Moreover, the pore size of them increased with increment of PEG content and length. Cell attachment and growth on the PCEG microspheres were evaluated by using mouse NIH 3T3 fibroblasts as model cells in vitro. The result showed that the PCEG microspheres with large porous structure were more favorable for cell attachment and growth. Thus the PCEG microspheres with rapid degradation rate and large porous structure possess potential use as injectable scaffolds in tissue engineering. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42861.  相似文献   

19.
Hydrogel/silver nanocomposites have shown immense potential in many biological applications. In this article, a facile method to synthesize poly(acrylamide‐co‐(β‐cyclodextrin))/silver nanocomposites is reported. The silver nanoparticles were in situ synthesized accompanying with the formation of poly(acrylamide‐co‐(β‐cyclodextrin)) hydrogel by gamma irradiation without additional reducing and stabilizing agents. In addition, the nanocomposites were prepared under ambient conditions. The formation of silver nanoparticles was confirmed by ultraviolet used to characterize the structure and composition of the synthetic nanocomposites. Transmission electron microscope verified the formation and homogeneous distribution of silver nanoparticles in the hydrogel matrix. The hybrid hydrogel exhibited excellent water‐swelling properties, which could be controlled by varying the mass ratio of acrylamide (AM) to β‐cyclodextrin (β‐CD) in the hydrogel. Furthermore, the poly(acrylamide‐co‐(β‐cyclodextrin))/silver nanocomposites were found to be effective in inhibiting the growth of both Gram‐negative Escherichia coli and Gram‐positive Staphylococcus aureus. POLYM. COMPOS., 37:1480–1487, 2016. © 2014 Society of Plastics Engineers  相似文献   

20.
BACKGROUND: Biodegradable block copolymers have attracted particular attention in both fundamental and applied research because of their unique chain architecture, biodegradability and biocompatibility. Hence, biodegradable poly[((R )‐3 ‐hydroxybutyrate)‐block‐(D ,L ‐lactide)‐block‐(ε‐caprolactone)] (PHB‐PLA‐PCL) triblock copolymers were synthesized, characterized and evaluated for their biocompatibility. RESULTS: The results from nuclear magnetic resonance spectroscopy, gel permeation chromatography and thermogravimetric analysis showed that the novel triblock copolymers were successfully synthesized. Differential scanning calorimetry and wide‐angle X‐ray diffraction showed that the crystallinity of PHB in the copolymers decreased compared with methyl‐PHB (LMPHB) oligomer precursor. Blood compatibility experiments showed that the blood coagulation time became longer accompanied by a reduced number of platelets adhering to films of the copolymers with decreasing PHB content in the triblocks. Murine osteoblast MC3T3‐E1 cells cultured on the triblock copolymer films spread and proliferated significantly better compared with their growth on homopolymers of PHB, PLA and PCL, respectively. CONCLUSION: For the first time, PHB‐PLA‐PCL triblock copolymers were synthesized using low molecular weight LMPHB oligomer as the macroinitiator through ring‐opening polymerization with D ,L ‐lactide and ε‐caprolactone. The triblock copolymers exhibited flexible properties with good biocompatibility; they could be developed into promising biomedical materials for in vivo applications. Copyright © 2008 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号