共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of blends based on poly(lactic acid) (PLA) and poly[(butylene succinate)‐co‐adipate] (PBSA) as well as their nanocomposites with nanoclay (PLA/PBSA/Clay ternary nanocomposites) were prepared using the twin‐screw extruder. The blends were prepared for PBSA contents ranging from 25 to 75 wt % and their corresponding nanocomposites were prepared at a single‐clay concentration. The morphology and structure of the blends and the nanocomposites were examined using field emission scanning electron microscopy, transmission electron microscopy, and X‐ray diffraction. Rheological properties (dynamic oscillatory shear measurements and elongational viscosities) of the blends, nanocomposites, and pure components were studied in detail. The strain hardening intensity of different blends and nanocomposites was compared with the behavior of the pure components. Strong strain hardening behavior was observed for blends composed of 50 wt % and higher PBSA content. However, the effect of PBSA content on the elongational viscosity was less pronounced in PLA/PBSA/Clay ternary nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
2.
Mechanical and thermal properties of poly(butylene succinate)/poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) biodegradable blends 下载免费PDF全文
Biodegradable polymer blends of poly(butylene succinate) (PBS) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) were prepared with different compositions. The mechanical properties of the blends were studied through tensile testing and dynamic mechanical thermal analysis. The dependence of the elastic modulus and strength data on the blend composition was modeled on the basis of the equivalent box model. The fitting parameters indicated complete immiscibility between PBS and PHBV and a moderate adhesion level between them. The immiscibility of the parent phases was also evidenced by scanning electron observation of the prepared blends. The thermal properties of the blends were studied through differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DSC results showed an enhancement of the crystallization behavior of PBS after it was blended with PHBV, whereas the thermal stability of PBS was reduced in the blends, as shown by the TGA thermograms. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42815. 相似文献
3.
Morphology,mechanical, and rheological properties of poly(lactic acid)/ethylene acrylic acid copolymer blends processing via vane extruder 下载免费PDF全文
This work aimed to study, for the first time, the melt blending of poly(lactic acid) (PLA) and ethylene acrylic acid (EAA) copolymer by a novel vane extruder to toughen PLA. The phase morphologies, mechanical, and rheological properties of the PLA/EAA blends of three weight ratios (90/10, 80/20, and 70/30) were investigated. The results showed that the addition of EAA improves the toughness of PLA at the expense of the tensile strength to a certain degree and leads the transition from brittle fracture of PLA into ductile fracture. The 80/20 (w/w) PLA/EAA blend presents the maximum elongation at break (13.93%) and impact strength (3.18 kJ/m2), which is 2.2 and 1.2 times as large as those of PLA, respectively. The 90/10 and 80/20 PLA/EAA blends exhibit droplet‐matrix morphologies with number average radii of 0.30–0.73 μm, whereas the 70/30 PLA/EAA blend presents an elongated co‐continuous structure with large radius (2.61 μm) of EAA phase and there exists PLA droplets in EAA phase. These three blends with different phase morphologies display different characteristic linear viscoelastic properties in the low frequency region, which were investigated in terms of their complex viscosity, storage modulus, loss tangent, and Cole‐Cole plots. Specially, the 80/20 PLA/EAA blend presents two circular arcs on its Cole‐Cole plot. So, the longest relaxation time of the 80/20 blend was obtained from its complex viscosity imaginary part plot, and the interfacial tension between PLA and EAA, which is 4.4 mN/m, was calculated using the Palierne model. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40146. 相似文献
4.
Blends of poly(L ‐lactic acid) (PLLA) and poly (butylene terephthalate‐co‐adipate) (PBTA) were prepared at ratios of 50 : 50, 60 : 40, and 80 : 20 by melt blending in a Laboplastomill. Improved mechanical properties were observed in PLLA when it was blended with PBTA, a biodegradable flexible polymer. Irradiation of these blends with an electron beam (EB) in the presence of triallyl isocyanurate (TAIC), a polyfunctional monomer, did not cause any significant improvement in the mechanical properties, although the gel fraction increased with the TAIC level and dose level. Irradiation of the blends without TAIC led to a reduction in the elongation at break (Eb) but did not show a significant effect on the tensile strength. Eb of PBTA was unaffected by EB radiation in the absence of TAIC. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
5.
Both poly(lactic acid) (PLA) and poly(butylene adipate‐co‐terephthalate) (PBAT) are fully biodegradable polyesters. The disadvantages of poor mechanical properties of PLA limit its wide application. Fully biodegradable polymer blends were prepared by blending PLA with PBAT. Crystallization behavior of neat and blended PLA was investigated by differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and wide angle X‐ray diffraction (WAXD). Experiment results indicated that in comparison with neat PLA, the degree of crystallinity of PLA in various blends all markedly was increased, and the crystallization mechanism almost did not change. The equilibrium melting point of PLA initially decreased with the increase of PBAT content and then increased when PBAT content in the blends was 60 wt % compared to neat PLA. In the case of the isothermal crystallization of neat PLA and its blends at the temperature range of 123–142°C, neat PLA and its blends exhibited bell shape curves for the growth rates, and the maximum crystallization rate of neat PLA and its blends all depended on crystallization temperature and their component. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
6.
Blends of two biodegradable and semicrystalline polymers, poly(L ‐lactic acid) (PLLA) and poly(butylene succinate‐co‐adipate) (PBSA), were prepared by solvent casting in different compositions. The miscibility, morphology, and thermal behavior of the blends were investigated using differential scanning calorimetry and optical microscopy. PLLA was found to be immiscible with PBSA as evidenced by two independent glass transitions and biphasic melt. Nonisothermal crystallization measurements showed that fractionated crystallization behavior occurred when PBSA was dispersed as droplets, evidenced by multiple crystallization peaks at different supercooling levels. Crystallization and morphology of the blends were also investigated through two‐step isothermal crystallization. For blends where PLLA was the major component, different content of PBSA did not make a significant difference in the crystallization mechanism and rate of PLLA. For blends where PBSA was the major component, the crystallization rate of PBSA decreased with increasing PLLA content, while the crystallization mechanism did not change. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007 相似文献
7.
The vital differences between the use of untreated starch and gelatinized starch in blends with poly(butylene succinate) (Bionolle) were thoroughly examined in this study. The melting temperature decreased slightly with increasing dosages of untreated and gelatinized starch. The added starch perhaps tended to disrupt the intermolecular hydrogen bonding within the Bionolle matrix. On the other hand, a large increase in the crystallinity was seen with the addition of starch. Starch appeared to play a nucleating role in the blends. The trend of the glass‐transition temperature decreasing with the starch level was similar to the trend of the melting temperature. For the same starch content, the glass‐transition temperature showed some variations. For blends containing a certain amount of gelatinized starch, the thermal stability remained to a certain degree but continued to decrease. This was ascribed to the relatively low heat stability of starch. As for the mechanical properties, a significant increase in the tensile strength (up to 2 times) was observed when untreated starch was replaced with gelatinized starch in the blends. Similarly, the tear strength increased up to 1.5 times if gelatinized starch was employed. Apparently, the gelatinization of starch was efficiently achieved for promoting its compatibility with Bionolle. In all cases, the mechanical properties of Bionolle blended with gelatinized starch were better than those of Bionolle blended with untreated starch. A morphological investigation provided evidence in support of these findings. This relatively low‐cost gelatinization approach provides an alternative to a high‐cost compatibilizer approach for improving the performance of biodegradable blends. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 257–264, 2005 相似文献
8.
Fabrication of high‐viscosity biodegradable poly(butylene succinate) (PBS)/solid epoxy (SE)/carboxyl‐ended polyester (CP) blends 下载免费PDF全文
Haibo Li Yu Luo Rongrong Qi Jie Feng Jian Zhu Yuzhuo Hong Zhengming Feng Pingkai Jiang 《应用聚合物科学杂志》2015,132(27)
Expanding the applications of poly(butylene succinate) (PBS) in processing fields requiring high melt strength, PBS/solid epoxy (SE)/carboxyl‐ended polyester (CP) blends with high melt viscosity were fabricated by the in‐situ crosslinking reaction using SE and CP. The influence of SE/CP had been studied in terms of the rheological property, crystallization behavior, and mechanical property of PBS. The results showed that the melt viscosity of PBS could be enhanced significantly by three orders of magnitude, when the loading ratio of SE to CP was over 15/15. Furthermore, it had also been found that SE/CP component had positive impact on the mechanical properties of PBS, inclusive of reduction of brittleness. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42193. 相似文献
9.
Naturally amorphous biopolyester poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P3/4HB) containing 21 mol % of 4HB was blended with semi‐crystal poly(butylene succinate) (PBS) with an aim to improve the properties of aliphatic polyesters. The effect of PBS contents on miscibility, thermal properties, crystallization kinetics, and mechanical property of the blends was evaluated by DSC, TGA, FTIR, wide‐angle X‐ray diffractometer (WAXD), Scanning Electron Microscope (SEM), and universal material testing machine. The thermal stability of P3/4HB was enhanced by blending with PBS. When PBS content is less than 30 wt %, the two polymers show better miscibility and their crystallization trend was enhanced by each other. The optimum mechanical properties were observed at the 5–10 wt % PBS blends. However, when the PBS content is more than 30 wt %, phase inversion happened. And the two polymers give lower miscibility and poor mechanical properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
10.
Poly(butylene succinate‐co‐butylene adipate) (PBSA)/graphene oxide (GO) nanocomposites were synthesized via in situ polymerization for the first time. Atomic force microscopy demonstrated the achievement of a single layer of GO, and transmission electron microscopy proved the homogeneous distribution of GO in the PBSA matrix. Fourier transform infrared spectroscopy results showed the successful grafting of PBSA chains onto GO. With the incorporation of 1 wt % GO, the tensile strength and flexural modulus of the PBSA were enhanced by 50 and 27%, respectively. The thermal properties characterized by differential scanning calorimetry and thermogravimetric analysis showed increases in the melting temperatures, crystallization temperatures, and thermal stability. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4075–4080, 2013 相似文献
11.
Two series of biodegradable polymer blends were prepared from combinations of poly(L ‐lactide) (PLLA) with poly(?‐caprolactone) (PCL) and poly(butylene succinate‐co‐L ‐lactate) (PBSL) in proportions of 100/0, 90/10, 80/20, and 70/30 (based on the weight percentage). Their mechanical properties were investigated and related to their morphologies. The thermal properties, Fourier transform infrared spectroscopy, and melt flow index analysis of the binary blends and virgin polymers were then evaluated. The addition of PCL and PBSL to PLLA reduced the tensile strength and Young's modulus, whereas the elongation at break and melt flow index increased. The stress–strain curve showed that the blending of PLLA with ductile PCL and PBSL improved the toughness and increased the thermal stability of the blended polymers. A morphological analysis of the PLLA and the PLLA blends revealed that all the PLLA/PCL and PLLA/PBSL blends were immiscible with the PCL and PBSL phases finely dispersed in the PLLA‐rich phase. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
12.
Miscibility and crystallization behaviors of biodegradable poly(butylene succinate‐co‐butylene terephthalate) (PBST)/poly(hydroxyl ether biphenyl A) (phenoxy) blends were investigated with various techniques in this work. PBST and phenoxy are completely miscible as evidenced by the single composition‐dependent glass transition temperature over the entire blend compositions. Nonisothermal melt crystallization peak temperature is higher in neat PBST than in the blends at a given cooling rate. Isothermal melt crystallization kinetics of neat and blended PBST was studied and analyzed by the Avrami equation. The overall crystallization rate of PBST decreases with increasing crystallization temperature and the phenoxy content in the PBST/phenoxy blends; however, the crystallization mechanism of PBST does not change. Moreover, blending with phenoxy does not modify the crystal structure but reduces the crystallinity degree of PBST in the PBST/phenoxy blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
13.
Microstructure,rheological behavior,and properties of poly(lactic acid)/poly(butylene succinate)/organoclay nanocomposites 下载免费PDF全文
Nanocomposites made of poly(lactic acid), poly(butylene succinate), and organically modified montmorillonite were prepared by melt blending in a twin screw extruder. The influence of the organoclay content on nanocomposite properties was investigated. The nanocomposite structure has been characterized by various techniques at different scales. X‐ray diffraction showed an intercalated structure whereas rheological investigations in small amplitude oscillatory shear indicated a partial exfoliation. It was also shown that organoclay was evenly dispersed in the matrix even though some large aggregates were also observed. The mechanical properties of nanocomposites were measured in uniaxial tensile test. Oxygen and water vapor permeability was also characterized. It was shown that dispersed organoclay and aggregates have a direct impact on mechanical properties and permeability. An increase of Young's modulus by 41% and a decrease of permeability by 40% could be obtained with 7 wt % organoclay. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40364. 相似文献
14.
Weifu Dong Benshu Zou Piming Ma Wangcheng Liu Xin Zhou Dongjian Shi Zhongbin Ni Mingqing Chen 《Polymer International》2013,62(12):1783-1790
Poly(lactic acid) (PLA)/poly[(butylene adipate)‐co‐terephthalate] (PBAT) blends were fabricated by melt blending, with 2,2′‐(1,3‐phenylene)bis(2‐oxazoline) (BOZ) and phthalic anhydride (PA) used as compatibilizers. It was found that a small amount of BOZ or PA greatly increased the elongation at break of the PLA/PBAT blends without sacrificing their high tensile strength. Scanning electron microscopy results revealed that the PBAT particles became finer and were uniformly dispersed in the matrix when the compatibilizers were incorporated, which indicated that the interfacial bonding and compatibilization between PLA and PBAT were improved in the presence of the compatibilizers. Compared with PLA/PBAT blends, the molecular weight of PLA/PBAT/PA/BOZ blends was increased due to chain‐extending reactions. Differential scanning calorimetry results suggested PBAT decreased the crystallization rate and crystallinity of PLA in the blends. Moreover, the glass transition temperature of PBAT was further decreased when the compatibilizers were used. © 2013 Society of Chemical Industry 相似文献
15.
The effect of poly(ethylene glycol) as plasticizer in blends of poly(lactic acid) and poly(butylene succinate) 下载免费PDF全文
Weraporn Pivsa‐Art Kazunori Fujii Keiichiro Nomura Yuji Aso Hitomi Ohara Hideki Yamane 《应用聚合物科学杂志》2016,133(8)
The effect of polyethylene glycol (PEG) on the mechanical and thermal properties of poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) blends was examined. Overall, it was found that PEG acted as an effective plasticizer for the PLA phase in these microphase‐separated blends, increasing the elongation at break in all blends and decreasing the Tg of the PLA phase. Significant effects on other properties were also observed. The tensile strength and Young's modulus both decreased with increasing PEG content in the blends. In contrast, the elongation at break increased with the addition of PEG, suggesting that PEG acted as a plasticizer in the polymer blends. Scanning electron microscope images showed that the fracture mode of PLA changed from brittle to ductile with the addition of PEG in the polymer blends. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43044. 相似文献
16.
Morphology,rheology, crystallization behavior,and mechanical properties of poly(lactic acid)/poly(butylene succinate)/dicumyl peroxide reactive blends 下载免费PDF全文
The reactive blends were prepared by the blending of poly(lactic acid) (PLA) with poly(butylene succinate) (PBS) in the presence of dicumyl peroxide (DCP) as a radical initiator in the melt state. The gel fractions, morphologies, crystallization behaviors, and rheological and mechanical properties of the reactive blends were investigated. Some crosslinked/branched structures were formed according to the rheological measurement and gel fraction results, and the crosslinked/branched structures played the role of nucleation site for the reactive blends. The PLA–PBS copolymers of the reactive blends acted as a compatibilizer for the PLA and PBS phases and, hence, improved the compatibility between the two components. Moreover, it was found that the reactive blends showed the most excellent mechanical properties as the DCP contents were 0.2 and 0.3 phr. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39580. 相似文献
17.
Blends of poly(butylene adipate-co-terephthalate)/polyglycolic acid (PBAT/PGA) were prepared by melt blending, in which PGA was used as reinforcing component. Impacts of PGA content on tensile property, microstructure, crystallization property, melt viscosity, barrier performance of the blends were researched. Compared with very soft behavior of PBAT, the tensile yield strength and modulus of PBAT/PGA (65/35) sample increased from 7.67, 62.6 MPa of neat PBAT to 12.05, 158.9 MPa, respectively. However, owing to poor PBAT/PGA interface compatibility, its elongation at break decreased significantly from 1082.1% to 88.7%. An epoxy chain extender (ADR) was used as reactive modifier to improve its interface compatibility and rheological property. The related physical properties of PBAT/PGA/ADR (65/35/x) samples with various ADR contents were evaluated in detail. It was found that ADR exerted relatively complex influences on the properties. Overall, compared with neat PBAT and PBAT/PGA (65/35) sample, the PBAT/PGA/ADR (65/35/x) samples exhibited better stiffness-ductility balance and higher processing stability. 相似文献
18.
The effect of organically modified clay on the morphology and properties of poly(propylene) (PP) and poly[(butylene succinate)‐co‐adipate] (PBSA) blends is studied. Virgin and organoclay modified blends were prepared by melt‐mixing of PP, PBSA and organoclay in a batch‐mixer at 190 °C. Scanning electron microscopy studies revealed a significant change in morphology of PP/PBSA blend in the presence of organoclay. The state of dispersion of silicate layers in the blend matrix was characterized by X‐ray diffraction and transmission electron microscopic observations. Dynamic mechanical analysis showed substantial improvement in flexural storage modulus of organoclay‐modified blends with respect to the neat polymer matrices or unmodified blends. Tensile properties of virgin blends also improved in the presence of organoclay. Thermal stability of virgin blends in air atmosphere dramatically improved after modification with organoclay. The effect of organoclay on the melt‐state liner viscoelastic properties of virgin blends was also studied. The non‐isothermal crystallization behavior of homopolymers, virgin, and organoclay‐modified blends were studied by differential scanning calorimeter. The effect of incorporation of organoclay on the cold crystallization behavior of PP/PBSA blends is also reported.
19.
Simultaneous plasticization and blending of isolate soy protein with poly[(butylene succinate)‐co‐adipate] by one‐step extrusion process 下载免费PDF全文
Jennifer Renoux Jagadeesh Dani Catherine Douchain Kalappa Prashantha Patricia Krawczak 《应用聚合物科学杂志》2018,135(27)
This article focuses on the preparation of isolated soy protein plasticized by a glycerol and water mixture/poly[(butylene succinate)‐co‐adipate] blends by an original single step extrusion process. Prepared blends were injection‐molded and characterized for their molecular interaction, morphology, rheological, thermal, dynamic mechanical, and mechanical properties. The comparison of these results with those obtained using a more regular two‐step compounding process validates the technical efficiency of this cost‐effective one‐step approach. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46442. 相似文献
20.
Poly(butylene succinate‐co‐adipate) (PBSA) and two types of SiO2 (hydrophilic or hydrophobic) were used to modify poly(L ‐lactic acid) (PLLA). The mechanical properties, rheological and thermal behavior, phase morphology, and thermal stability of PLLA/PBSA/SiO2 composites were investigated. The impact strength, flexural strength, and modulus of PLLA/PBSA blends increased after the addition of hydrophobic SiO2 without decreasing the elongation at break, and the elongation at break monotonically decreased with increasing hydrophilic SiO2 content. The melt elasticity and viscosity of the PLLA/PBSA blend increased with the addition of SiO2. The hydrophilic SiO2 was encapsulated by the dispersed PBSA phase in the composites, which led to the formation of a core–shell structure, whereas the hydrophobic SiO2 was more uniformly dispersed and mainly located in the PLLA matrix, which was desirable for the optimum reinforcement of the PLLA/PBSA blend. The thermogravimetric analysis results show that the addition of the two types of SiO2 increased the initial decomposition temperature and activation energy and consequently retarded the thermal degradation of PLLA/PBSA. The retardation of degradation was prominent with the addition of hydrophobic SiO2. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献