首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The single‐step direct synthesis of tin‐silver‐copper nanopowders and nanostructured coatings using the flame‐based high‐temperature reducing jet (HTRJ) process is reported. Nanostructured coatings were deposited and sintered within the HTRJ reactor to study the effect of reductive sintering temperature on their electrical conductivity and surface morphology. Although the ultimate application of these nanoparticles is in printed electronics, which requires dispersing them as stable inks before depositing and sintering them, our approach of direct deposition from the gas phase provides an upper limit on the conductivity achievable with a given composition. The directly deposited coatings had high electrical conductivity, including a value of 2 × 106 S/m for 36 wt % Cu‐40 wt % Ag‐24 wt % Sn sintered at 200°C. This is twice the conductivity of a pure silver coating prepared under similar conditions. Moreover, similarly high electrical conductivity was achieved using only 20% Ag with sintering at 300°C. © 2015 American Institute of Chemical Engineers AIChE J, 62: 408–414, 2016  相似文献   

2.
Polypropylene (PP) composite films were successfully prepared using melt blending by directly mixing PP pellets with zeolite A or silver‐zeolite A powder and then blowing. All the prepared films were characterized in terms of their physical, mechanical, optical, and gas permeability properties. The structure of each composite film was similar to that of the pure PP film. The crystallinity and glossy quality of the composite films were increased by the addition of silver, zeolite, and maleic anhydride grafted PP (PP‐g ‐MA). The composite PP film with zeolite A and PP‐g ‐MA exhibited a level of oxygen and carbon dioxide permeation (6438 and 15,087 cc m?2 day?1 atm?1, respectively). Finally, all the films were evaluated for their antibacterial activity and fruit packaging applications. Silver‐zeolite A‐PP composite films exhibited a bactericidal activity of 79% against Staphylococcus aureus and 52% against Escherichia coli , while the zeolite A‐PP film could extend the shelf‐life of bananas for over a week. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45450.  相似文献   

3.
BACKGROUND: Metal‐exchanged zeolites have been reported to have significant limitations on cayalytic activity, such as counterbalancing the negative framework charges and limitation of active space. Alternative methods of incorporating silver ions into the framework of zeolites are therefore necessary. This paper reports on a technique for producing silver doped analcime by isomorphous substitution of silver ion into the framework of analcime. The amount of aluminium in the gel composition was reduced by a factor of 5%, 10% and 20% and an equivalent amount of silver was added to the gel and treated in a conventional manner for zeolite crystallisation. Some of the aluminium in the reaction gel was replaced with the silver. The silver‐doped analcime samples where characterised by X‐ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X‐rays (EDX), Fourier transform infrared (FTIR) spectroscopy and inductively coupled plasma‐atomic emission spectroscopy (ICP‐AES) analysis. RESULTS: The amount of silver ions loaded for each reduction of aluminium as determined by EDX were found to be (w/w) 0.29%, 1.41% and 2.10%, respectively. XRD pattern SEM images of the silver‐doped analcime showed the presence of zeolite P in addition to analcime. CONCLUSION: Silver‐doped analcime was successfully produced with different silver loadings and may exhibit higher anti‐microbial activities than silver‐exchanged counterparts. Copyright © 2008 Society of Chemical Industry  相似文献   

4.
In this study, silver‐ or copper‐doped TiO2–Ce‐, TiO2–La‐, and commercial TiO2 (P25)‐supported catalysts were prepared. The catalysts and supports were characterised by powder X‐ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and nitrogen adsorption studies. UV‐light‐assisted heterogeneous Fenton‐like oxidation of two different‐structure dyes (anionic azo dye Orange II, CI Acid Orange 7 and cationic triphenylmethane dye Crystal Violet, CI Basic Violet 3) was investigated over the catalysts. Higher catalytic activity was observed in the oxidation of Orange II than in the oxidation of Crystal Violet. For both dyes, the TiO2–Ce and TiO2–La‐supported catalysts, which were in the form of anatase only, gave higher photocatalytic activity than the P25‐supported catalysts, which were in the form of anatase and rutile. Complete colour removal was observed during oxidation of Orange II over Cu/TiO2–Ce and Cu/TiO2–La catalysts, whereas the highest degree of decolorisation, 89.3%, was achieved by oxidation of Crystal Violet over Ag/TiO2–Ce. The pH of the solution affected the surface state of the TiO2, thus affecting the photocatalytic degradation of the dyes. The surface area of the catalysts is also a key parameter that influences their photocatalytic activity. It was observed that catalysts having higher surface areas brought about greater dye degradation.  相似文献   

5.
A series of tris(R‐methyltriazolylmethyl)amines [R = C6H5 ( 1 ), 4‐FC6H4 ( 2 ), 4‐MeOC6H4 ( 3 ), Fc ( 4 )] were prepared and used as ligands for catalytic ATRP of methyl methacrylate (MMA). Despite a lower activity, the CuBr/ 4 catalyst promoted relatively well controlled polymerization compared to CuBr/ 1 , as evidenced by narrower polydispersity indices. Meanwhile, no polymerization activity was observed with CuBr/ 2 and CuBr/ 3 under the catalytic conditions investigated. The CV measurements of CuBr2 complexes supported 1 and 4 in DMSO showed E1/2 values of –0.206 and –0.224 V, respectively, confirming the more electron‐rich nature of CuBr/ 4 . Although both CuBr/ 1 and CuBr/ 4 catalysts were only partially soluble in several organic solvents used, kinetic studies revealed a pseudo first order linear plot of ln[M]0/[M]t versus time. Addition of CuBr2 into the polymerization systems led to a decrease in polymer polydispersities and the observed rate constants (kobs). © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
The adsorption process of iodine, a major volatile radionuclide in the off‐gas streams of spent nuclear fuel reprocessing, on hydrogen‐reduced silver‐exchanged mordenite (Ag0Z) was studied at the micro‐scale. The gas‐solid mass transfer and reaction involved in the adsorption process were investigated and evaluated with appropriate models. Optimal conditions for reducing the silver‐exchanged mordenite (AgZ) in a hydrogen stream were determined. Kinetic and equilibrium data of iodine adsorption on Ag0Z were obtained by performing single‐layer adsorption experiments with experimental systems of high precision at 373–473 K over various iodine concentrations. Results indicate approximately 91% to 97% of the iodine adsorption was through the silver‐iodine reaction. The effect of temperature on the iodine loading capacity of Ag0Z was discussed. The Shrinking Core model describes the data well, and the primary rate controlling mechanisms were macro‐pore diffusion and silver‐iodine reaction. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1024–1035, 2017  相似文献   

7.
In this article, a copper‐in‐polymer‐gradient composite film (CPGCF) was synthesized by electrochemical strategy via reducing a solvent‐swollen cathode film (SCF). The latex nanoparticles of a ternary copolymer including styrene, butyl acrylate, and acrylic acid structural units play the key role to form well‐graded copper distribution in this ternary copolymer matrix through the porous morphological structure developed by latex nanoparticle semimelt joining. The morphological structure along cross‐section of CPGCF includes three layers: (1) a dense copper layer in ternary copolymer matrix whose most outside was originally attached to cathode in electrochemical reactor, (2) a shrublike layer that grew from dense copper layer, and (3) a clear layer in which there is no obvious reduced copper phase whose most outside was originally contacted with liquid electrolyte medium in electrochemical reactor. As experimental aspects, the influences of emulsion polymerization conditions of ternary copolymer, predrying time and temperature of SCF, dc voltage in electrochemical reduction on CPGCF structure were investigated. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
孙硕程  刘益伦  陈曦 《化工进展》2018,37(6):2132-2139
建立了一个将局部跨膜渗透过程和全尺寸通道内流动过程相结合的多尺度理论模型,通过计算各物理参数沿膜组件的分布来确定全尺寸应用下压力延迟渗透过程的工作性能。通过数值计算,重点研究了隔网的孔隙率、厚度以及层数对全尺寸应用下压力延迟渗透过程性能的影响,发现提高原料液和提取液隔网的孔隙率可以提高压力延迟渗透过程的功率密度,但是同时会降低该过程的比能。降低原料液隔网的厚度和提高提取液隔网的厚度可以提高该过程的功率密度,而原料液和提取液隔网厚度的降低均可以提高该过程的比能。多层隔网会对压力延迟渗透过程的能量密度和比能均产生负面影响。本文研究结果可以为膜组件的设计提供参考:原料液隔网应当具有相对较小的孔隙率和厚度,而提取液隔网应当具有相对较大的孔隙率和厚度,尽量不要使用多层隔网。  相似文献   

9.
The IR‐spectroscopy and MVCIR technique were used to study the role of technological factors (filler content, film thickness) in oxidation of polyethylene coatings filled with copper powder. It was learned that copper powder introduced into polyethylene reduces the ultimate level of oxidation of both the outer surface layer and deep‐seated layers of the polymer; also, the layer thickness of the specimens oxidized at diffusion conditions was observed to be decreased. Besides, the oxidation gradient determined through the specimen thickness was decreased on increasing the filler content. For example, with copper concentration over 3 vol %, the ultimate level of oxidation within the polymer layer that undergoes diffusive oxidation remains unchanged. The filler exerts its influence on bonding of the coatings, first of all through variations in the oxidation level of the polymer layer bordering on the substrate. For example, at the filler concentration above 3 vol %, the achievable level of adhesional strength does not depend on the coat thickness (the coat thickness being smaller than that of the diffusively oxidized layer). In thicker coatings, oxidative transformations do not, in fact, take place in the zone of adhesional contact, and the adhesion strength remains unchanged during thermal treatment. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2047–2052, 2001  相似文献   

10.
The copper‐catalysed hydrogenation of triglyceride oils differs from the nickel‐catalysed reaction in that copper catalysts only hydrogenate double bonds in methylene interrupted polyunsaturated fatty acid moieties. Accordingly, the copper‐catalysed reaction stops when the triglycerides present in the reaction mixture are only monounsaturated fatty acids and polyunsaturated fatty acids in which the double bonds are separated by more than one methylene group. Copper catalysts thus exhibit a very high oleic acid selectivity. This observation has been explained in the literature by assuming that copper catalysts can only catalyse the hydrogenation of conjugated polyenes and that they are also capable of catalysing the conjugation of methylene interrupted polyenes. Accordingly, the hydrogenation of linolenic acid and linoleic acid moieties starts with their conjugation which is then followed by hydrogen addition to these conjugated acids. For both reactions (conjugation and hydrogenation) the literature assumes the Horiuti‐Polanyi mechanism stipulating the addition of a hydrogen atom to a double bond as the first step. Reinterpretation of the literature data now leads to the hypothesis that the first step in the conjugation mechanism could well be the abstraction of a hydrogen atom from an allylic methylene group rather than the addition of a hydrogen atom to a doubly bonded carbon atom. A conjugated double bond system then results from the addition of a hydrogen atom to the allylic radical formed by the foregoing hydrogen abstraction.  相似文献   

11.
The tripodal ‘click’ compound tris(4‐trimethylsilylmethyl‐1,2,3‐triazolylmethyl)amine (TTTA) was prepared and investigated as a ligand for copper‐catalysed single‐electron transfer living radical polymerization of methyl methacrylate (MMA). Bulk polymerizations catalysed by Cu0/CuBr2/TTTA with a molar ratio of [MMA]0/[ethyl‐2‐bromoisobutyrate]0/[CuBr2]0/[TTTA]0 = 200:2:1:1 and a 1.0 × 1.0 cm2 Cu0 sheet were fast and well controlled (76% conversion with Mw/Mn = 1.19 after 3.5 h). Greater amounts of added air generally gave slower polymerizations although Mw/Mn remained low (<1.3) even when the polymerization was carried out under aerobic conditions. Decreasing initial concentrations of the Cu0/CuBr2/TTTA catalyst system or polymerization temperatures also resulted in slower polymerizations and yielded polymers with broader dispersity. Kinetic studies in the temperature range 40–90 °C revealed an apparent activation energy of 22.6 kJ mol?1. © 2014 Society of Chemical Industry  相似文献   

12.
High‐temperature oxide melt solution calorimetry has been performed to investigate the energetics of spinel solid solutions in the Mn3O4‐CuMn2O4 and Fe3O4‐CuFe2O4 systems. The spinel solid solutions were synthesized by a ceramic route and calcined at appropriate temperatures to obtain single phase samples. The drop solution enthalpies of the solid solutions in the Mn3O4‐CuMn2O4 system are the same within experimental error as the enthalpies of drop solution of mechanical mixtures of the end‐members, indicating a zero heat of mixing, i.e., ideal mixing in terms of enthalpy. In Fe3O4‐CuFe2O4, the drop solution enthalpy of the solid solutions shows a positive deviation from those of the mechanical mixture of the end‐members, suggesting negative mixing enthalpy. The formation enthalpies of the spinel solid solutions from their constituent oxides plus oxygen and from the elements were also determined.  相似文献   

13.
14.
BACKGROUND: Little attention has been paid to the use of large‐sized scrap cast iron for reduction of refractory organic pollutants at neutral pH and in the presence of dissolved oxygen (DO). RESULTS: Scrap cast iron and copper‐modified cast iron with fresh surfaces have a high reactivity towards the reduction of 2,4‐dinitrotoluene (2,4‐DNT). The extent of conversion reached around 80% and 97% respectively, though it gradually decreased with repeated reactions to relatively stable values of 63% and 72%, and recovered once the reacted filings were cleaned by dilute acid. After 50 days reaction, no dissolved copper appeared in the copper‐modified cast iron process. The mass loss of copper due to physical detachment reached 1.1% of the total coated copper within the initial 20 reaction days, and only 0.3% appeared in the next 30 days. 2,4‐DNT oxidizes scrap cast iron to generate mainly FeFe2O4 with DO, however, it oxidizes scrap copper‐modified cast iron to generate mainly γ‐FeO(OH) and α‐FeO(OH). CONCLUSION: Both samples of cast iron were successfully applied in the treatment of neutral wastewater containing 2,4‐DNT with high reactivity and good repeatable efficiency. Electrode reaction rate was enhanced by the deposited copper, which has strong chemical and physical stability. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
This article deals with a novel way of improving the anti‐biofouling potential of an anion exchange membrane (AEM) by surface modification with ethanol amine (AEOH), a low cost material without affecting the chemical structure and morphology of Quaternized Poly(ether imide) ( QPEI), the host membrane. The anti‐biofouling potential of the AEM was evaluated using bacteria anti‐adhesion test, hydrophilicity, surface roughness, water uptake, and the AEOH modification time. The data reveal that power density in all MFCs attain the highest in the sixth batch and thereafter declined albeit in a varying rate as expected measuring the least for QPEI‐30. Periodical measurement of internal resistance and protein content on the membrane surfaces were found to be the least for QPEI‐30 when compared with others. A reduced biofouling with improved anti‐biofouling property is attributed to the enhanced hydrophilicity due to surface modification. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44432.  相似文献   

16.
In this paper, the influences of composition of copolymers and acidity of electrolyte in an electrochemical reactor on morphological structure of copper‐in‐polymer gradient composite film were investigated. For binary copolymers, poly(acrylonitrile‐co‐methyl acrylate) [P(AN‐co‐MA)] and poly(acrylonitrile‐co‐sodium allyl sulfonate) [P(AN‐co‐SAS)], the charged group ? SO in P(AN‐co‐SAS) improves the swelling of the copolymer phase and copper reduction to form gradient morphology; the carboxylic ester group in P(AN‐co‐MA) is not effective because of its poor hydrophilicity, but it is a cooperating component with P(AN‐co‐SAS) to avoid excess of counterion (i.e., Na+) in SCF, which might severely interrupt Cu2+ coexistence. The swelling of the polymer phase is helpful to decrease the energy of the transfer ions in SCF and to enhance copper deposition and gradient formation. The increase of surface energy because of cluster growth raises the surface energy level of deposited Cu0 clusters. The conteraction between these two energy factors allows the size of clusters to be 50–100 nm. The appropriate H+ concentration improves active Cu2+ reduction and thus deposited gradient copper phase in the copolymer matrix. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 373–380, 2004  相似文献   

17.
18.
Numerical methods of particle technology are used to model the formation of catalyst precursors with the purpose to control disperse properties. A multicomponent and multiphase population balance model is applied to the precipitation of catalyst precursors in a T‐mixer. Copper precursors are chosen to be investigated in detail as a basis for catalysts with a broad range of applications such as in methanol synthesis, water‐gas shift and hydrogenation reactions. The simulations results could be validated by ex situ measurements such as the pH of the suspension, the solid dry weight of the precipitate, and the yield. Simulations show that dissociation reactions of copper and carbonate species in water control significantly the formation of Georgeite. Consumption of the copper component by solid formation can be controlled in a range of 20–100% by the adjustment of the pH of the copper nitrate reactant solution. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2104–2116, 2015  相似文献   

19.
A composite was prepared that contained diglycidyl ether of tetrabromobisphenol A (DGETBA) and 1,5‐di(2,3‐epoxypropoxy)naphthalene (A), 4,4′‐bis(2,3‐epoxypropoxy)benzylideneaniline (B), or 4,4′‐bis(2,3‐epoxypropoxy)biphenyl (C), and then was cured using different ratios of dicyandiamide (DICY). The results of DSC, TGA, coefficient of thermal expansion, dielectric constant, and dissipation factor testing of the composite epoxy resins were analyzed, and investigation of the copper‐clad laminate using the composite epoxy resins as prepreg was also performed. Additionally, moisture absorption, peel strength, arc resistance, comparative tracking index, and flammability of the copper‐clad laminate were examined. Clearly, some of the physical or mechanical properties of the composite and the copper‐clad laminate can be improved by optimal addition of naphthalene–phenyl‐based epoxy. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1485–1492, 2005  相似文献   

20.
Enantiodivergent catalyst systems were developed using metals with different ionic radii and a multifunctional brucine diol (BD) ligand. The catalytic use of purported 1:1 Cu‐BD complexes in the 1,3‐dipolar cycloaddition of azomethine ylides with chalcones resulted in the selective formation of endo‐pyrrolidines in 87–96% ees with an absolute stereochemical outcome of (2R,3S,4R,5S). In contrast, an opposite absolute stereochemical outcome was observed by using the catalysts derived from Ag(I) salts and BD. The demonstration of enantiodivergent approaches to a broad class of substrates/reaction types underlines their synthetic value in asymmetric synthesis.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号