首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acrylonitrile‐styrene‐butyl acrylate (ASA) graft copolymers with different acrylonitrile (AN) contents, the core‐shell ratio, and tert‐dodecyl mercaptan (TDDM) amounts were synthesized by seed emulsion polymerization. Polyvinylchloride (PVC)/ASA blends were prepared by melt blending ASA graft copolymers with PVC resin. Then the toughness, dynamic mechanical property, and morphology of the PVC/ASA blends were investigated. The results indicated that the impact strength of the PVC/ASA blends increased and then decreased with the increase of the AN content in poly(styrene‐co‐acrylonitrile (SAN) copolymer, and increased with the increase of the core‐shell ratio of ASA. It was shown that brittle‐ductile transition of PVC/ASA blends was dependent on poly(butyl acrylate) (PBA) rubber content in blends and independent of AN content in SAN copolymer. The introduction of TDDM made the toughness of PVC/ASA blends poor. Dynamic mechanical analysis (DMA) curves exhibited that PVC and SAN copolymers were immiscible over the entire AN composition range. From scanning electron microscopy (SEM), it was found that the dispersion of ASA in PVC/ASA blends was dependent on the AN content in SAN copolymer and TDDM amounts. J. VINYL ADDIT. TECHNOL., 22:43–50, 2016. © 2014 Society of Plastics Engineers  相似文献   

2.
A core–shell polyacrylate elastomer containing ultraviolet (UV) stabilizer was synthesized via semicontinuous seeded emulsion polymerization from butyl acrylate (BA), methyl methacrylate (MMA), and a polymerizable UV stabilizer 2‐hydroxy‐4‐(3‐methacryloxy‐2‐hydroxylproroxy)benzophenone (BPMA). The core–shell poly(MMA‐BA‐BPMA) was investigated by Fourier transform infrared spectroscopy, gel permeation chromatography UV–visible (UV–vis) absorption spectroscopy, and transmission electron microscope. Furthermore, the obtained core–shell poly(MMA‐BA‐BPMA) elastomer was used as a modifier to enhance the UV resistance and impact resistance of polyoxymethylene (POM). As studied by scanning electron microscope, the core–shell poly(BA‐MMA‐BPMA) elastomer could be well dispersed in POM matrix, indicating that the elastomer had good compatibility with POM. In addition, the POM/poly(MMA‐BA‐BPMA) blend was examined by differential scanning calorimetry before and after UV irradiation. The results showed that the melting point decreased as the irradiation time increased; however, the crystallinity culminated at 500‐h UV irradiation slightly decreased and at last leveled off. The mechanical properties of POM/poly(BA‐MMA‐BPMA) before and after UV irradiation were also studied. It revealed that the photostabilizing fragments in the elastomer could provide long‐term UV resistance to POM. Besides, the impact strength was also improved when compared with pure POM. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

3.
Poly(vinyl chloride) (PVC) with pendent N,N‐diethyldithiocarbamate groups (PVC–SR) was prepared through the reaction of PVC with sodium N,N‐diethyldithiocarbamate (NaSR) in butanone and used as a photoinitiator for the grafting polymerization of three vinyl monomers [styrene (St), methyl methacrylate (MMA), and acrylamide (Am)]. The effects of ultraviolet (UV) irradiation time, PVC–SR amount, and the monomer amount on grafting and grafting efficiency were investigated. The results showed that PVC–SR could initiate the polymerization of three vinyl monomers effectively and obtained crosslinked copolymers. The grafting and grafting efficiency of styrene and methyl methacrylate were higher than those of acrylamide. The polymerization activity of three monomers was acrylamide > methyl methacrylate > styrene. By analyzing the UV spectrum of PVC–SR with a different irradiation time, it was confirmed that PVC–SR was dissociated mainly into macromolecular the sulfur radical PVC–S · and the small molecular carbon radical · C(S)N(C2H5)2; the grafting polymerization mechanism was discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2569–2574, 2000  相似文献   

4.
Poly(butyl acrylate) grafted styrene and acrylonitrile copolymer (PBA-g-SAN, ASA) with core–shell structures were prepared by emulsion polymerization technology to improve the toughness of the poly(vinyl chloride) (PVC). The mechanical properties of the PVC/ASA blends were investigated. The notch impact strength of the PVC/ASA blend could reach 1200 J/m when the 13 phr ASA was added to the PVC. This was several times more than pure PVC resin. Scanning electron microscopy analysis results indicated that the improvement in impact strength of the PVC/ASA blend was attributed to shear yielding induced by ASA particles. Additionally, subtle changes in the ratio of monomers in the shell layer led to significant fluctuations in the mechanical properties of the composites. Dynamic mechanical analysis showed that the intermolecular interaction forces between ASA particles and PVC resins played a key role in improving the toughness of PVC/ASA blend.  相似文献   

5.
The UV irradiation aging behaviors of PVC composites with several inorganic fillers were studied through Fourier transform spectroscopy (FTIR), ultraviolet spectroscopy (UV‐Vis), differential scanning calorimeter (DSC), scanning electron microscopy (SEM), and mechanical property test. It was found that incorporation of a small amount of the inorganic fillers such as CaCO3, talc and SiO2 could hold up the UV aging behaviors of PVC. Those filler‐filled PVC composites sheets after 20 days UV irradiation maintain lower carbonyl index (CI) and good appearance of surfaces, as compared with the corresponding neat PVC sheets, ascribed to high reflection of those fillers to UV light. While montmorillonite (MMT) and pyrophyllite fillers could accelerate the UV aging behaviors of PVC, which could be concluded from both the sharp increase of the CI and lower Tg due to the chain scission reactions because of their high absorbance of these fillers to UV light in 290–400 nm. In these two PVC composites, UV irradiation caused the deterioration of their mechanical properties and the appearance of rough, cracked and chalked surfaces after 20 days UV irradiation. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
The dynamic mechanical studies, impact resistance, and scanning electron microscopic studies of ethylene propylene diene terpolymer–poly(vinyl chloride) (EPDM–PVC) and methyl methacrylate grafted EPDM rubber (MMA‐g‐EPDM)–PVC (graft contents of 4, 13, 21, and 32%) blends were undertaken. All the regions of viscoelasticity were present in the E′ curve, while the E″ curve showed two glass transition temperatures for EPDM–PVC and MMA‐g‐EPDM–PVC blends, and the Tg increased with increasing graft content, indicating the incompatibility of these blends. The tan δ curve showed three dispersion regions for all blends arising from the α, β, and Γ transitions of the molecules. The sharp α transition peak shifted to higher temperatures with increasing concentration of the graft copolymer in the blends. EPDM showed less improvement while a sixfold increase in impact strength was noticed with the grafted EPDM. The scanning electron microscopy micrographs of EPDM–PVC showed less interaction between the phases in comparison to MMA‐g‐EPDM–PVC blends. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1959–1968, 1999  相似文献   

7.
In this study, poly (vinyl chloride) (PVC)/α‐methylstyrene‐acrylonitrile‐butadiene‐styrene copolymer (AMS‐ABS) (70/30)/chlorinated polyethylene (CPE) ternary blends was prepared. With the addition of CPE, it did not exert a negative influence in both the glass transition temperature and heat distortion temperature. Thermogravimetric analysis showed that addition of CPE did not play a negative role in the thermal stability. With regard to mechanical properties, high toughness was observed combined with the decrease in tensile strength and flexural strength. With the addition of 15 phr CPE, the impact strength increased by about 21.0 times and 8.5 times in comparison with pure PVC and PVC/AMS‐ABS (70/30) blends, respectively. The morphology correlated well with the impact strength. It was also suggested from the morphology that shear yielding was the major toughening mechanisms for the ternary blends. And there existed a change in the fibril structures that are observed in scanning electron microphotographs. Our present study shows that combination of AMS‐ABS and CPE improves the toughness without sacrificing the heat resistance, and the value of notched impact strength can be enhanced to the same level of super‐tough nylon. POLYM. ENG. SCI., 54:378–385, 2014. © 2013 Society of Plastics Engineers  相似文献   

8.
Deuterohaemin–alanine–histidine–threonine–valine–glutamic acid–lysine (DhHP‐6) is a synthetic heme‐containing peroxidase mimic that exhibits a high peroxidase enzyme activity. Compared to other microperoxidases, DhHP‐6 has a poor stability and tends to aggregate in aqueous solutions. In this study, poly(ethylene glycol) (PEG) was used to improve the properties of DhHP‐6. Factors that affected the PEGylation product yield were investigated. PEGylated DhHP‐6 (mPEG–DhHP‐6) was characterized by reversed‐phase high‐pressure liquid chromatography (RP‐HPLC), matrix‐assisted laser desorption/ionization time of flight mass spectra (MALDI‐TOF‐MS), and ultraviolet–visible (UV–vis) spectroscopy. The results show that the optimal PEGylation reaction conditions were achieved when the PEGylation was conducted in a borate buffer solution at pH 8.0 and 25°C for 4 h with a feeding ratio of 2 equiv of active PEG. After PEGylation, mPEG–DhHP‐6 showed a great improvement in its stability with little activity loss. The UV–vis spectra of DhHP‐6 and mPEG–DhHP‐6 in different pH solutions showed that the aggregation of DhHP‐6 was partly suppressed after PEGylation. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
Creating load‐bearing hydrogels with superior mechanical strength and toughness is of vital importance for promoting the development of polymer hydrogels toward practical applications. Herein, a type of composite hydrogel is facilely fabricated employing simple and effective UV irradiation one‐pot method by introducing cheap and available nanosilica sol into hydrophobic association poly(acrylamide–lauryl methacrylate) (HAPAM gels). Composite hydrogels exhibit enhanced mechanical strength (compression stress reaching 4.4 MPa) and toughness (compression hysteresis energy achieved is 151.15 kJ m?3) compared to HAPAM gels. Composite hydrogels also demonstrate rapid self‐recovery behavior (95.91% stress recovery and 92.19% hysteresis energy recovery after restoration for 15 min, respectively) and favorable fatigue‐resistant ability without the help of external stimuli at room temperature based on the cyclic loading–unloading compression measurements. The simple and effective design strategy may help the development of hydrogel materials toward practical applications for soft sensors, tissue engineering, and actuators.  相似文献   

10.
The formation of conjugated double bonds in polyvinylchloride (PVC) films by ultraviolet (UV) irradiation is analyzed using an in situ laser‐monitoring technique we have developed to measure changes in transmittance of thin UV‐irradiated PVC films. Conjugated polyenes of different lengths are produced by laser irradiation at 193 and 248‐nm wavelengths. This technique promises to have broader applications in the study of polymer reaction mechanisms and kinetics. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 59–63, 2000  相似文献   

11.
The low‐temperature ultraviolet (UV) irradiation equipment, developed in our Lab, was used to study the photo‐aging of poly (vinyl chloride) (PVC) films at low temperature. The color change kinetics and corresponding structure development of PVC film during low‐temperature UV aging were studied through L*a*b* coordinates Commission International d' Eclau‐age (CIE 1976 color space) and Ultraviolet spectrophotometer (UV–vis) and Fourier transform infrared spectroscopy (FTIR). It was found that the yellowness difference (?b*) and color difference (?E*) of the PVC film increased almost linearly with the aging time. Their values had a slower change at lower temperature. The kinetic study showed that the relationship between the velocity of coloration of the PVC film and the temperature agreed well with Arrhenius equation at low temperature. The activation energy of coloration of the PVC film was calculated. The FTIR spectra indicated that photo‐dehydrochloration, resulting in the generation of conjugated carbon–carbon double bonds, was the main reaction for PVC during photo‐aging at low temperature. Meanwhile, the photo‐oxidation was also obvious and could not be neglected. It clearly confirmed that the absorption peaks of conjugated carbon–carbon double bond increased and shifted to longer wavelength during photo‐aging in the UV‐abs analysis. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

12.
The influence of UV absorber (Chimassorb81) on the photodegradation mechanism of different average degrees of polymerization (DP ) of poly (vinyl chloride) (PVC) with UV‐irradiation time was investigated by viscosity‐average molecular weight determination, UV‐vis spectroscopy, FTIR, contact angle measurement, and scanning electron microscopy (SEM). The PVC films with different DP (1000 and 3000), which contained 0.3 or 0.5 phr Chimassorb81, were prepared by solution casting. It was carried out by exposing specimens to xenon‐arc light source with a spectral irradiance of 0.68 W/(m2 nm) at 63°C. It is found that the Chimassorb81 is efficient photostabilizer for PVC with different DP . Although the Chimassorb81 delays the photodegradation of PVC, it does not influence the photodegradation mechanisms of PVC with different DP . The main photodegradation reaction for the lower DP of PVC is dehydrochlorination in the initial stage of UV‐irradiation, and then the crosslinking and chain scission reactions occurred after long irradiation. However, the main reaction of the higher DP of PVC is not dehydrochlorination but crosslinking and chain scission in the initial stage of UV‐irradiation. The results of carbonyl index, C? Cl index, contact angle measurement, and SEM also show that the photostability of Chimassorb81 is more effective for the higher DP of PVC, especially in the presence of higher concentration of Chimassorb81. POLYM. ENG. SCI., 47:1480–1490, 2007. © 2007 Society of Plastics Engineers  相似文献   

13.
Polyacrylamide grafted crosslinked poly (vinyl chloride) beads (PAM‐PVC) were prepared by the surface‐initiated controlled/“living” radical polymerization (SI‐CLRP) methodology from the crosslinked poly(vinyl chloride) beads with surface modification with diethyldithiocarbamyl groups under UV irradiation. The macroiniferter, diethyldithiocarbamyl crosslinked poly(vinyl chloride) beads (DEDTC‐PVC) were prepared by the reaction of the surface C? Cl groups with sodium N,N‐diethyl dithiocarbamate. The “grafting from” polymerization exhibited some “living” polymerization characteristics and the percentage of grafting (PG%) increased linearly with polymerizing time and achieved 47.6% after 6 h UV irradiation. The beaded polymer with polyacrylamide surface was also characterized with Fourier transform infrared (FTIR) and scanning electron microscope (SEM). Its adsorption property for Hg(II) ion was also investigated preliminarily. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:3385–3390, 2006  相似文献   

14.
Polyaniline (PANI) composite films were prepared on silicon and quartz glass substrates by electron beam deposition (EBD), using polyvinyl chloride (PVC), aluminum trichloride (AlCl3), and mixture of PVC and AlCl3 as dopants. Molecular structure, morphology, optical, and electrical properties of PANI composite films were investigated by Fourier transform infrared spectroscopy, UV–vis spectroscopy, four‐probe method, and atomic force microscope. The results show that PANI film prepared by EBD has a similar molecular structure with initial powder. PVC is dehydrochlorinated under electron beam irradiation, but HCl fails to protonate the quinoid site of PANI during films deposition. AlCl3 doped in PANI films induces the decrease of surface resistance and the formation of a two‐layered morphological structure in composite film. In addition, AlCl3 enhances the decomposition of PVC and increases the surface resistance of (AlCl3, PVC)‐doped PANI composite film. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

15.
The effect of the combination of a UV absorber (Chimassorb 81) with different types of thermal stabilizers, including an organic calcium complex and an organotin mercaptide, on the photodegradation of poly(vinyl chloride) (PVC) was investigated by color difference measurements, UV–Vis spectroscopy, Fourier‐transform infrared spectroscopy, thermogravimetric (TG) analysis, and viscosity‐average molecular weight determination. Films of PVC containing 0.5 phr of Chimassorb 81, with and without 2 phr of a thermal stabilizer, were prepared by solution casting. Then the accelerated UV weathering of the films was carried out under xenon light with an irradiance of 0.51 W/(m2 · nm) at 65°C. The results showed that both Chimassorb 81 and the mixture of Chimassorb 81 with the organic calcium complex showed good behavior in inhibiting the photodehydrochlorination and photooxidation of PVC. In contrast, the combination of Chimassorb 81 and methyltin mercaptide significantly accelerated initial color development during the final 200 h of exposure because of the UV sensitivity of the organotin. Moreover, when Chimassorb 81 and the methyltin mercaptide were used together to stabilize PVC films, the expected antioxidant effect of the mixture was not observed, in contrast to the behavior found with other stabilized systems, perhaps because the Chimassorb 81 had been depleted by the methyltin mercaptide during the UV irradiation. The TG analysis revealed that ultraviolet irradiation had caused severe destruction of the PVC chains. However, addition of Chimassorb 81 or the combination of Chimassorb 81 with the organic calcium complex effectively prevented the destruction, as was demonstrated by changes in the activation energies for thermal degradation. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers  相似文献   

16.
Reactive coatings of hydroxyl polyacrylic resin (HPAR) with hexamethylene‐1,6‐diisocyanate were carried out under accelerated 313‐nm ultraviolet (UV) aging for 2000 h and under natural exposure in Lhasa, Tibet, for 24 months. With UV irradiation and exposure time, the gloss changes in coatings with HPAR containing 3.0% or less hydroxyl groups decreased exponentially, whereas the gloss decay of coatings with HPAR containing over 4.5% hydroxyl groups decreased linearly. During 254‐nm UV aging, the gloss changes in coatings with HPAR containing 1.4% or less hydroxyl groups decreased as a Gaussian function. The weather resistance of a coating was correlated to the HPAR, UV irradiation, temperature, and humidity. Scanning electron microscopy indicated that there were degradation reactions and that some substance was lost in the matrix polymer during accelerated UV aging; then, uneven surfaces appeared and caused decreased gloss. Accelerated UV aging was faster than natural‐exposure aging, and the aging velocity of 254‐nm UV was 3–5 times faster than that of 313‐nm UV. Through the changes in the gloss, the aging tolerance of a coating could be monitored, and its aging resistance could also be predicted. The dynamic mechanical thermal analysis results showed that the coatings had good properties. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1271–1278, 2007  相似文献   

17.
An ethylene–propylene–diene terpolymer (EPDM) was photocrosslinked under UV irradiation with benzil dimethyl ketal (BDK) as a photoinitiator and trimethylolpropane triacrylate (TMPTA) as a crosslinker. The efficiency of the photoinitiated crosslinking system EPDM–BDK–TMPTA, various factors affecting the crosslinking process (the photoinitiator and crosslinker and their concentrations, the irradiation time, the temperature, the atmosphere and UV‐light intensity, and the depth of the UV‐light penetration), and the mechanical properties of photocrosslinked EPDM were examined extensively through the determination of the gel contents, infrared spectra, and mechanical measurements. EPDM samples 3 mm thick were easily crosslinked with a gel content of about 90% after 30 s of UV irradiation under optimum conditions. The photoinitiating system of a suitable initiator combined with a multifunctional crosslinker such as BDK–TMPTA enhanced the efficiency of the photocrosslinking reaction, especially by increasing the initial rate of crosslinking. The gel content of photocrosslinked EPDM, which was determined by the content of diene in EPDM, the depth of the UV‐light penetration, and the light intensity, played a key role in increasing the mechanical properties of the photocrosslinked samples in this work. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1837–1845, 2004  相似文献   

18.
A novel rubber composite of acrylonitrile‐butadiene rubber (NBR) filled with gadolinium salt (GS) particles was prepared for the first time and vulcanized via coordination reactions. The resulting materials exhibit good mechanical properties. Structural analyses indicate that the composite is a kind of elastomers based on coordination cross‐linking interactions between the nitrile groups (–CN) of NBR and gadolinium ions. The mechanical properties of vulcanized GS/NBR rubber are altered when the cross‐link density is changed in the composites. These materials show good irradiation resistance because of the introduction of GS. POLYM. COMPOS., 34:1013–1019, 2013. © 2013 Society of Plastics Engineers  相似文献   

19.
In this work, 1 wt % carbon monoxide (CO) poly(ethylene‐carbon monoxide) (ECO) copolymer sheets were artificially exposed to ultraviolet (UV) light with a power density of 3 mW/cm2 for up to 130 h. A thorough mechanical characterization of the irradiated material was conducted, in which both the stress–strain data and the values of the quasistatic crack initiation and growth toughness were measured and correlated with companion uniaxial tensile tests and single‐edge‐notched fracture tests. Average values of the elastic modulus, failure strain, and failure stress were determined from the tensile tests. The full‐field optical technique of digital image correlation was used to quantify in‐plane deformation (displacements and displacement gradients) during the fracture experiments and to extract values of the crack initiation and growth fracture toughness. The elastic modulus increased monotonically with UV irradiation for the exposure times used in this investigation. In addition, for low irradiation times of less than 5 h, both the failure strain and failure stress of ECO decreased, and this caused a corresponding decrease in the crack initiation and growth toughness. However, for longer irradiation times, the failure strain remained almost invariable, whereas the failure stress increased by about 25% over that of unirradiated ECO. As a result, for longer irradiation times (>5 h), 1 wt % CO ECO became not only stiffer but also stronger and tougher, as quantified by companion fracture experiments. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 139–148, 2004  相似文献   

20.
Pentaerythritol‐aluminum (PE‐Al) was synthesized by a solid‐phase reaction in this study. The formation and characteristics of PE‐Al were confirmed by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). SEM images showed that the shapes of PE‐Al particles were spherical and the average size was around 23 nm. The thermal properties of rigid poly(vinyl chloride) (PVC) with PE‐Al were tested by Congo red test, thermal aging test, conductivity test, thermogravimetric analysis (TGA), and UV–visible spectroscopy test. The results showed that combination of PE‐Al, in comparison with commercial thermal stabilizers, presented an obvious improvement in stabilization efficiency of PVC. Moreover, addition of PE‐Al could significantly prolong static stability time of PVC, reduce weight loss, and improve the initial color of PVC films. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3704–3709, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号