首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic iron oxide (maghemite, Fe3O4) particles were encapsulated with fluorescent polymer phase. The resulting fluorescent magnetic polymer particles were characterized by Fourier transform infrared spectroscopy (FTIR), thermal gravimeter analysis (TGA), reflection optical microscopy, differential scanning calorimeter (DSC), Fritsch particle sizer, scanning electron microscopy (SEM), powder X‐ray diffractometer (XRD), and vibrating sample magnetometer (VSM) measurements. FTIR and XRD confirmed the presence of iron oxide in polymer phase. The TGA and DSC measurements indicated that the magnetic polymer particles have more than 50% iron oxide content and high thermal stability. SEM and reflection optical microscopy under UV light revealed that all maghemite particles were embedded in the polymer spheres and have fluorescent characteristics. The size‐distribution analysis of prepared magnetic particles was shown that the means diameter of the particles slightly increased. According to our magnetometry data, shape of the loops evidences the ferromagnetic character of the material and no evidence of superparamagnetism was seen. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
Magnetic and electrically responsive hydrogel networks were developed for drug‐delivery applications. The hydrogel matrices were synthesized by the polymerization of acrylamide monomer in the presence of carboxymethylcellulose (CMC) or methylcellulose (MC) with N,N‐methylenebisacrylamide, a crosslinker with the redox initiating system ammonium persulfate/tetramethylethylenediamine. The magnetic nanoparticles were generated throughout these hydrogel matrices by an in situ method by the incorporation of iron ions and their subsequent reduction with ammonia. A series of hydrogel–magnetic nanocomposites (HGMNCs) were developed with various CMC and MC compositions. The synthesized HGMNCs were characterized with spectral (Fourier transform infrared and ultraviolet–visible spectroscopy), X‐ray diffraction, thermal, and microscopy methods. These HGMNCs contained iron oxide (Fe3O4) nanoparticles with an average particle size of about 22 nm, as observed by transmission electron microscopy. The dielectrical properties of the pure hydrogel (HG); the hydrogel loaded with iron ions, or the hydrogel iron‐ion composite (HGIC); and the HGMNCs were measured. These results suggest that HGMNCs exhibited higher dielectric constants compared to HG and HGICs. The curcumin loading and release characteristics were also measured for HG, HGIC, and HGMNC systems. These data revealed that there was a sustained release of curcumin from HGMNCs because of the presence of magnetic nanoparticles in the hydrogel networks. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
High surface area maghemite, γ-Fe2O3, nanoparticles were prepared via carbon-templated solution combustion synthesis, which is a two-step approach. Step one involves the combustion synthesis of maghemite nanoparticles embedded in an amorphous carbon matrix, by using a fuel rich reaction mixture of triethylenetetramine and iron nitrate. Step two consists of residual carbon removal by treating the previously-obtained composite precursor with hydrogen peroxide, which releases the maghemite nanopowder. This approach avoids carbon removal by thermal treatment, thus preserving the nanometric size of maghemite nanoparticles (8–12?nm), yielding a high specific surface area of 191.9?m2/g. At the same time, the final maghemite nanoparticles presented a superparamagnetic behavior and a saturation magnetization of 26.2?emu/g, in relation to the small particle size.  相似文献   

4.
Metal oxide nanoparticles have been used as burning rate catalysts for ammonium perchlorate (AP) decomposition in composite solid propellants. Though most papers point to the efficiency of different sizes, shapes and compositions, the texture of the agglomerated particles plays an important role in the catalytic efficiency, but this aspect is not always discussed. In this paper, iron oxide and composite iron oxide/silica powders were synthesized in microemulsion systems and their effect on the decomposition of AP was investigated. X‐ray diffraction (XRD) analysis and Fourier transformed infrared spectroscopy (FT‐IR) showed that the synthesized powders have an amorphous to nanocrystalline pattern, with Fe2O3 composition. The use of different FT‐IR spectroscopic techniques – transmission, diffuse reflectance (DRIFT) and universal attenuated total reflectance (UATR) – allied to electron microscopy analysis allowed the characterization of the samples’ surface, indicating that silicon oxide forms a thick matrix that covers the iron oxide nanoparticles. Adsorption of N2, light scattering and electron microscopy pointed that all samples are formed by mesoporous agglomerated nanoparticles containing micropores indicating that silicon oxide forms a thick matrix that covers the iron oxide nanoparticles. Adsorption of N2, pointed that all samples show different microstructures and light scattering indicated results refer to agglomerated particles. Finally, the catalytic effect of the samples on the decomposition of AP was evaluated by thermogravimetric analysis coupled to differential thermal analysis (TG/DTA), showing that only the high temperature decomposition step of AP was affected by the catalyst, shifting to lower temperatures the higher the surface area of the synthesized iron oxide sample, regardless of the presence of the silica matrix.  相似文献   

5.
Partially aliphatic polyimide/iron oxide composites based on the poly(amic acid) from 5‐(2,5‐dioxotetrahydro‐3‐furyl)‐3‐methyl‐3‐cyclohexene‐1,2‐dicarboxylic acid anhydride and 4,4′‐oxydianiline with iron oxide in different weight percentages were obtained. The structural phases of the transition of magnetite to maghemite occurring in these composites, at different temperatures, are discussed. The physical characteristics, including magnetic, thermal, structural and morphological properties, evaluated using X‐ray diffraction, scanning electron microscopy and thermal analysis, are influenced by the interplay of the filler content and the structural changes of the composite. The X‐ray diffraction patterns of all samples show a cubic structure indexed as magnetite (Fe3O4) or maghemite (γ‐Fe2O3). Quantification of these two phases was evidenced by the Rietveld method. The electrical properties analysed under different humidity conditions evidence the potential applicability of these polyimide/iron oxide materials as humidity sensors. © 2015 Society of Chemical Industry  相似文献   

6.
The aim of this study was to obtain saccharide (dextran and sucrose)-coated maghemite nanoparticles with antibacterial activity. The polysaccharide-coated maghemite nanoparticles were synthesized by an adapted coprecipitation method. X-ray diffraction (XRD) studies demonstrate that the obtained polysaccharide-coated maghemite nanoparticles can be indexed into the spinel cubic lattice with a lattice parameter of 8.35 Å. The refinement of XRD spectra indicated that no other phases except the maghemite are detectable. The characterization of the polysaccharide-coated maghemite nanoparticles by various techniques is described. The antibacterial activity of these polysaccharide-coated maghemite nanoparticles (NPs) was tested against Pseudomonas aeruginosa 1397, Enterococcus faecalis ATCC 29212, Candida krusei 963, and Escherichia coli ATCC 25922 and was found to be dependent on the polysaccharide type. The antibacterial activity of dextran-coated maghemite was significantly higher than that of sucrose-coated maghemite. The antibacterial studies showed the potential of dextran-coated iron oxide NPs to be used in a wide range of medical infections.  相似文献   

7.
A ‘grafting from’ method has been used to fabricate polystyrene/iron‐based oxide materials. The styrene conversion is considerably low when initiator‐modified iron‐based oxides are used. We demonstrate that malononitrile in catalytic amounts strongly enhances the monomer conversion. The hybrid materials are fabricated using a two‐step process. First, an atom transfer radical polymerization initiator molecule containing a phosphonic acid group (2‐bromo‐2‐methylpropionic acid 11‐phosphonoundecyl ester) is covalently immobilized onto the surface of CoFe2O4 and α‐Fe2O3 nanoparticles. In the second step, the polymerization of styrene is performed at the particle surface with and without the addition of malononitrile. Fourier transform infrared spectroscopy, transmission electron microscopy, thermogravimetry and size exclusion chromatography are used to characterize the metal oxide, the initiator molecule grafted onto the metal oxide, the hybrid material and the polymer chains.© 2013 Society of Chemical Industry  相似文献   

8.
Abstract

Magnetic carbon-iron oxide nanoparticles have been synthesized using tannin, a renewable resource material, in combination with a microwave-based thermolytic process without the addition of any inert or reducing gas during the synthesis. The predominant iron oxide species present in these particles has been determined by XRD and FT-IR to be magnetite (Fe3O4). These iron oxide nanoparticles are embedded within a carbon matrix in small clusters generally ≤100 nm in size. The resulting powder is approximately 48% (w/w) magnetite, and has been characterized by magnetic susceptibility and SQUID analysis.  相似文献   

9.
Iron oxide nanoparticles, to be used in a health effects study, were synthesized in a H2/air diffusion flame and characterized by transmission electron microscopy, X-ray diffraction, surface area measurement, inductively coupled plasma mass spectrometry, and a spectrophotometric speciation method. The nanoparticles exhibited the maghemite (γ -Fe2O3) crystal structure and contained only trivalent iron. There were two size modes in the particles. The large size mode contained crystalline, non-agglomerated particles with a median diameter of approximately 45 nm; the small size mode contained particles that were in the size range of 3–8 nm and were mostly amorphous. Depending on the value taken for the small particle size, the small mode accounted for 73–82% of the particle surface area. The particles in the small size mode were likely formed from the vapor of FeO and Fe.  相似文献   

10.
《Polymer》2007,48(3):720-727
In situ precipitation of iron oxide nanoparticles within the cross-linked styrene-(N-4-carboxybutylmaleimide) copolymer was carried out by an ion-exchange method. The resulting composite was studied by X-ray photoelectron (XPS) and Fourier transform infrared (FTIR) spectroscopies. FTIR analysis showed the evolution of iron oxide deposition and the formation of sodium carboxylate due to the deposition treatment. In addition, XPS analysis indicated the complete oxidation of iron(II) to iron(III) by the presence of the representative peaks of iron oxide and iron oxyhydroxide. X-ray diffraction analysis was used to identify the inorganic phases. The results showed the formation of maghemite (γ-Fe2O3), and after several deposition cycles, goethite (α-FeOOH). The morphology and spatial distribution of iron oxide particles within the copolymer matrix were determined by transmission electron microscopy. The mean particle size of the iron oxide was of 14 nm as determined from wide-angle X-ray diffraction using the Scherrer equation. The evolution of magnetic properties with the number of deposition cycles was investigated by magnetometry at room temperature. The poly(styrene-co-N-4-carboxybutylmaleimide)/γ-Fe2O3/α-FeOOH/composite showed a soft ferrimagnetic behavior and, after the third deposition cycle, showed a saturation magnetization of 8.04 emu/g at 12 kOe and coercivity field of 51 Oe.  相似文献   

11.
A novel porous tube reactor that combines simultaneous reactions and continuous dilution in a single-stage gas-phase process was designed for nanoparticle synthesis. The design is based on the atmospheric pressure chemical vapor synthesis (APCVS) method. In comparison to the conventional hot wall chemical vapor synthesis reactor, the APCVS method offers an effective process for the synthesis of ultrafine metal particles with controlled oxidation. In this study, magnetic iron and maghemite were synthesized using iron pentacarbonyl as a precursor. Morphology, size, and magnetic properties of the synthesized nanoparticles were determined. The X-ray diffraction results show that the porous tube reactor produced nearly pure iron or maghemite nanoparticles with crystallite sizes of 24 and 29 nm, respectively. According to the scanning mobility particle sizer data, the geometric number mean diameter was 110 nm for iron and 150 nm for the maghemite agglomerates. The saturation magnetization value of iron was 150 emu/g and that of maghemite was 12 emu/g, measured with superconducting quantum interference device (SQUID) magnetometry. A computational fluid dynamics (CFD) simulation was used to model the temperature and flow fields and the decomposition of the precursor as well as the mixing of the precursor vapor and the reaction gas in the reactor. An in-house CFD model was used to predict the extent of nucleation, coagulation, sintering, and agglomeration of the iron nanoparticles. CFD simulations predicted a primary particle size of 36 nm and an agglomerate size of 134 nm for the iron nanoparticles, which agreed well with the experimental data.

Copyright 2015 American Association for Aerosol Research  相似文献   

12.
Maghemite (γ‐Fe2O3)‐poly(methyl methacrylate) (PMMA) nanocomposites were prepared by grafting 3‐(trimethoxy‐silyl) propyl methacrylate on the surface of maghemite nanoparticles, this process being followed by methyl methacrylate radical polymerization. Three different hybrids with 0.1, 0.5, and 2.5 wt% of maghemite nanoparticles were studied. The results indicate that these nanocomposites consist of a homogeneous PMMA matrix in which maghemite nanoparticles with a bimodal size distribution are embedded. The existence of covalent bonding between silane monomers and atoms on the maghemite surface was evidenced. AFM images showed a clear increase in surface roughness for increasing maghemite content. The thermal stability of PMMA‐maghemite nanocomposites is higher than that of pure PMMA and increases for increasing maghemite content. The results of our theoretical studies indicate that the electron density in the maghemite nanoparticle is not homogenous, the low electron density volumes being supposed to be radical trappers during PMMA decomposition, thus acting as a thermal stabilizer. POLYM. COMPOS., 51–60, 2016. © 2014 Society of Plastics Engineers  相似文献   

13.
The synthesis of various nanoscale materials, such as nanoparticles, nanowires of Au, Pt, Ni Co, Fe, Ag etc., by electrodeposition techniques have been demonstrated in this article. Both potentiostatic and galvanostatic methods were employed to carry out the electrodeposition process under different potential ranges, time durations, and current densities. The electrochemical behavior of the deposited nanoparticles on various substrates was investigated by cyclic voltammetric and chronoamperometric techniques. The synthesis of mono-dispersed gold (Au) nanoparticles on indium tin oxide (ITO) coated glass, preparation of Au nanorods on nanoporous anodic alumina oxide (AAO), formation of Au nanoclusters on polypyrrole-modified glassy carbon electrode and one-step electrodeposition of nickel nanoparticle chains embedded in TiO2 etc. have been highlighted in this article. The potential applications of synthesized nanoparticles such as the role of maghemite (Fe2O3) in arsenic remediation, higher electrocatalytic activity of Ag nanoclusters for the reduction of benzyl chloride, and the role of C60 nanoparticle-doped carbon film in fabrication processes are also presented in this article.  相似文献   

14.
Platinum (Pt) nanoparticles show high activity as catalysts in various chemical reactions. The control of the morphology of Pt nanostructures can provide an opportunity to improve their catalytic properties. The preparation of Pt‐loaded iron‐oxide polyvinylbenzyl chloride nanocomposites was done in several stages: first by the formation of the core consisting of magnetite nanoparticles and second by the polymerization of vinylbenzyl chloride in the presence of the magnetic core particles. The third step is the amination of the chlorine group with ammonia, which leads to an ion exchange resin. Then, the Pt precursor (H2PtCl6) is attached by ion exchange. Finally, the Pt ions are reduced to Pt metal with NaBH4. The obtained material can be dispersed easily and be used as a catalyst which can be separated after the reaction by magnetic fields. Characterization of the resulting metallic nanocomposites is evaluated by atomic absorption spectroscopy, thermal gravimetric analysis, transmission electron microscopy, infrared spectroscopy, and gas chromatography. The activity of Pt at magnetic core/shell nanocomposites was measured for the reduction reaction of cinnamaldehyde to cinnamyl alcohol. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
Mixed zinc oxide nanoparticle coated magnetic iron oxide has been prepared by a sol–gel and co-precipitation routes. Magnetic iron oxide nanoparticles were synthesized by co-precipitation of ferric and ferrous ions with ammonia, and then zinc oxide was coated onto the surface of magnetic iron oxide by hydrolysis of zinc precursors. As a result, zinc oxide coated magnetic iron oxide nanoparticles with an average size of 68 nm were obtained. The crystalline bacterial cell surface layer)S-layer (used in this study was isolated from Lactobacillus helveticus ATCC 12046. The S-layer was adsorbed onto the surface of zinc oxide nanoparticle coated magnetic iron oxide. The nanoparticles were analyzed by X-ray powder diffractometry (XRD), infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FESEM) were used to characterize the structural and the chemical features of the nanocomposites. The infrared spectra indicate that the S-layer-nanoparticle interaction occurs. This novel nanoparticle showed admirable potential in adsorption of S-layers on the surface of oxides for drug delivery.  相似文献   

16.
Iron oxide nanoparticle coated poly(ethylene oxide) nanofibers as organic–inorganic hybrids with 200–400‐nm diameters were prepared by the in situ synthesis of iron oxide nanoparticles on poly(ethylene oxide) nanofibers through the electrospinning of a poly(ethylene oxide) solution having Fe2+ and Fe3+ ions in a gaseous ammonia atmosphere. Transmission electron microscopy analysis proved the presence of iron oxide nanoparticles on the polymer nanofibers. The thermal properties of the nanofiber mat were also studied with differential scanning calorimetry and thermogravimetric analysis techniques. X‐ray diffraction showed that the formed iron oxide nanoparticles were maghemite nanoparticles. The results were compared with those of the electrospinning of a poly(ethylene oxide) solution having Fe2+ and Fe3+ ions and a pure poly(ethylene oxide) solution in an air atmosphere. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

17.
In this article, a series of hybrid materials consisted of epoxy resin matrix and well‐dispersed amino‐modified silica (denoted by AMS) nanoparticles were successfully prepared. First of all, the AMS nanoparticles were synthesized by performing the conventional acid‐catalyzed sol–gel reactions of tetraethyl orthosilicate (TEOS), which acts as acceded sol–gel precursor in the presence of 3‐aminopropyl trimethoxysilane (APTES), a silane coupling agent molecules. The as‐prepared AMS nanoparticles were then characterized by FTIR, 13C‐NMR, and 29Si‐NMR spectroscopy. Subsequently, a series of hybrid materials were prepared by performing in situ thermal ring‐opening polymerization reactions of epoxy resin in the presence of as‐prepared AMS nanoparticles and raw silica (RS) particles (i.e., pristine silica). AMS nanoparticles were found to show better dispersion capability in the polymer matrices than that of RS particles based on the morphological observation of transmission electron microscopy (TEM) study. The better dispersion capability of AMS nanoparticles in hybrid materials was found to lead enhanced thermal, mechanical properties, reduced moisture absorption, and gas permeability based on the measurements of thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and gas permeability analysis (GPA), respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
《Ceramics International》2022,48(21):31191-31202
A solvothermal route to prepare Glutathione capped hybrid ytterbium/iron oxide nanoparticles with potential applications as multiplatform contrast agent in medical image techniques has been developed. The influence of ytterbium/iron molar ratio used as precursor, as well as the degree of the autoclave filling on the structural and morphological characteristics of the obtained nanoparticles has been extensively studied. Although all nanoparticles present similar composition, with YbFeO3 being the majority phase, size and morphology of the as synthetized nanoparticles are highly influenced by the critical temperature and by the over -saturation reached during the solvothermal process. We have demonstrated that glutathione properly functionalizes the hybrid nanoparticles, increasing their colloidal stability and decreasing their cytotoxicity. Additionally, they show good imaging in magnetic resonance and X-ray computerized tomography, thereby indicating promising potential as a dual contrast agent. This work presents, for the first time, glutathione functionalized ytterbium/iron oxide nanoparticles with potential applications in Biomedicine.  相似文献   

19.
Both silica/polystyrene (SiO2/PS) and silica/polystyrene‐b‐polymethacryloxypropyltrimethoxysilane (SiO2/PS‐b‐PMPTS) hybrid nanoparticles were synthesized via surface‐initiated atom transfer radical polymerization (SI‐ATRP) from SiO2 nanoparticles. The growths of all polymers via ATRP from the SiO2 surfaces were well controlled as demonstrated by the macromolecular characteristics of the grafted chains. Their wettabilities were measured and compared by water contact angle (WCA) and surface roughness. The results show that the nanoparticles possess hydrophobic surface properties. The static WCA of SiO2/PS‐b‐PMPTS hybrid nanoparticles is smaller than that of SiO2/PS hybrid nanoparticles, meanwhile, the surface roughness of SiO2/PS‐b‐PMPTS hybrid nanoparticles is yet slightly rougher than that of SiO2/PS hybrid nanoparticles, which shows that the combination and competition of surface chemistry and roughness of a solid material can finally determine its wettability. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

20.
An effective synthesis strategy of hybrid metal (PtRu)/metal oxide (SnO2) nanoparticles on graphene nanocomposites is developed using a microwave-assisted one-pot reaction process. The mixture of ethylene glycol (EG) and water is used as both solvent and reactant. In the reaction system for the synthesis of SnO2/graphene nanocomposite, EG not only reduces graphene oxide (GO) to graphene, but also results in the formation of SnO2 facilitated by the presence of a small amount of water. On the other hand, in the reaction system for preparation of PtRu/graphene nanocomposites, EG acts as solvent and reducing agent for reduction of PtRu nanoparticles from their precursors and reduction of graphene from graphene oxide. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) characterizations confirm the feasibility of the microwave-assisted reaction system to simultaneously reduce graphene oxide and to form SnO2 or PtRu nanoparticles. The as-synthesized SnO2/graphene hybrid composites show a much higher supercapacitance than the pure graphene, and the as-prepared PtRu/graphene show much better electrocatalytic activity for methanol oxidation compared to the commercial E-TEK PtRu/C electrocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号