首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To explore a potential method for improving the toughness of a polylactide (PLA), we used a thermoplastic polyurethane (TPU) elastomer with a high strength and toughness and biocompatibility to prepare PLA/TPU blends suitable for a wide range of applications of PLA as general‐purpose plastics. The structure and properties of the PLA/TPU blends were studied in terms of the mechanical and morphological properties. The results indicate that an obvious yield and neck formation was observed for the PLA/TPU blends; this indicated the transition of PLA from brittle fracture to ductile fracture. The elongation at break and notched impact strength for the PLA/20 wt %TPU blend reached 350% and 25 KJ/m2, respectively, without an obvious drop in the tensile strength. The blends were partially miscible systems because of the hydrogen bonding between the molecules of PLA and TPU. Spherical particles of TPU dispersed homogeneously in the PLA matrix, and the fracture surface presented much roughness. With increasing TPU content, the blends exhibited increasing tough failure. The J‐integral value of the PLA/TPU blend was much higher than that of the neat PLA; this indicated that the toughened blends had increasing crack initiation resistance and crack propagation resistance. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Several polyacrylonitrile (PAN)/tea polyphenol (TP) blends were prepared with various mixing weight ratios (percentage). With a commercial acrylonitrile–butadiene–styrene (ABS) as reference, the results show that the PAN/TP blends with 12.5 wt % TP had a better antiwear ability and similar hardness to those of ABS. All of the prepared PAN/TP blends showed a lower impact strength than the referenced ABS. However, some values were indeed higher than those reported for engineering materials in the literature, for example, polystyrenes and some ABS blends. Differential scanning calorimetry, differential thermogravimetry, and dynamic mechanical analysis indicated that the PAN/TP blends had enhanced the thermal stability compared to the pure PAN. Fourier transform infrared spectral analysis suggested that the H bonds increased in the PAN/TP blends. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40411.  相似文献   

3.
The optical properties and rheological properties were studied for binary reactive blends composed of poly(ethylene terephthalate‐co‐ethylene isophthalate) [P(ET–EI)] and a styrene–acrylate based copolymer with glycidyl functionality. The blade rotation speed in the internal mixer greatly affected the structure and properties for the blend system. Intensive mixing at a high rotation speed enhanced the optical transparency because of the reduced particle size of the dispersed phase. The graft copolymer generated by the reaction between P(ET–EI) and the modifier was responsible for the fine morphology. Furthermore, the copolymer also enhanced the elastic nature in the molten state because it acted as a long‐chain branched polymer. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

4.
The enhancement of mechanical properties were achieved by solution blending of poly(d ‐lactide) (PDLA) and 5‐arm poly(l ‐lactide) (5‐arm PLLA). Differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction (WAXD) results indicated almost complete stereocomplex could be obtained when 5‐arm PLLA exceeded 30wt %. Tensile test results showed that the addition of 5‐arm PLLA in linear PDLA gave dramatically improvement both on tensile strength and elongation at break, which generally could not be increased simultaneously. Furthermore, this work transformed PDLA from brittle polymer into tough and flexible materials. The mechanism was proposed based on the TEM results: the stereocomplex crystallites formed during solvent evaporation on the blends were small enough (100–200 nm), which played the role of physical crosslinking points and increased the interaction strength between PDLA and 5‐arm PLLA molecules, giving the blends high tensile strength and elongation at break. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42857.  相似文献   

5.
Blends of poly(styrene‐co‐acylonitrile) (SAN) with ethylene–propylene–diene monomer (EPDM) rubber were investigated. An improved toughness–stiffness balance of the SAN/EPDM blend was obtained when an appropriate amount of acrylonitrile–EPDM–styrene (AES) graft copolymer was added, prepared by grafting EPDM with styrene–acrylonitrile copolymer, and mixed thoroughly with both of the two components of the blend. Morphological observations indicated a finer dispersion of the EPDM particles in the SAN/EPDM/AES blends, and particle size distribution became narrower with increasing amounts of AES. Meanwhile, it was found that the SAN/EPDM blend having a ratio of 82.5/17.5 by weight was more effective in increasing the impact strength than that of the 90/10 blend. From dynamic mechanic analysis of the blends, the glass‐transition temperature of the EPDM‐rich phase increased from ?53.9 to ?46.2°C, even ?32.0°C, for the ratio of 82.5/17.5 blend of SAN/EPDM, whereas that of the SAN‐rich phase decreased from 109.2 to 108.6 and 107.5°C with the additions of 6 and 10% AES copolymer contents, respectively. It was confirmed that AES graft copolymer is an efficient compatibilizer for SAN/EPDM blend. The compatibilizer plays an important role in connecting two phases and improving the stress transfer in the blends. Certain morphological features such as thin filament connecting and even networking of the dispersed rubber phase may contribute to the overall ductility of the high impact strength of the studied blends. Moreover, its potential to induce a brittle–ductile transition of the glassy SAN matrix is considered to explain the toughening mechanism. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1685–1697, 2004  相似文献   

6.
The structure and properties of binary blends composed of poly(lactic acid) (PLA) and fibrous poly(butylene succinate) (PBS), which were prepared by an uniaxial stretching operation in the molten state, were studied and compared with those of blends having spherical particles of PBS in a continuous PLA phase. We found from electron microscope observation that PBS nanofibers with a large aspect ratio were generated in the stretched samples. Enlargement of the surface area of the PBS particles, which showed nucleating ability for PLA, led to a high degree of crystallization and enhanced the cold crystallization in the heating process. Moreover, the PBS fibers in the stretched samples had a dominant effect on the mechanical properties in the point range between the glass‐transition temperature of PLA and the melting temperature of PBS. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
This study represents the behavior of flexural test of methyl methacrylate modified unsaturated polyester polymer concrete beam reinforced with glass‐fiber‐reinforced polymer (GFRP) sheets. The failure mode, load–deflection, ductility index, and separation load predictions according to the GFRP reinforcement thickness were tested and analyzed. The failure mode was found to occur at the bonded surface of the specimen with 10 layers of GFRP reinforcement. For the load–deflection curve, as the reinforcement thickness of the GFRP sheet increased, the crack load and ultimate load greatly increased, and the ductility index was found to be the highest for the beam with the thickness of the GFRP sheet at 10 layers (6 mm) or 13 layers (7.3 mm). The calculated results of separation load were found to match only the experimental results of the specimens where debonding occurred. The reinforcement effect was found to be most excellent in the polymer concrete with 10 layers of GFRP sheet reinforcement. The appropriate reinforcement ratio for the GFRP concrete beam suggested by this study was a fiber‐reinforced‐plastic cross‐sectional ratio of 0.007–0.008 for a polymer concrete cross‐sectional ratio of 1 (width) : 1.5 (depth). © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Thermal, rheological, and physical properties of amorphous poly(ethylene terephthalate) (PET)/organoclay nanocomposite films which were successfully prepared with melt processing method using a PET/organoclay masterbatch were studied in detail. Structural and physical properties of the films were characterized by the UV–Vis spectroscopy, XRD and SEM analysis, DSC, DMA, and rheological tests and gas permeability measurements. Cold‐crystallization behavior of the samples was analyzed by the DSC and DMA methods. Aspect ratio of the organoclay layers were determined with the Nielsen and Halpin‐Tsai models based on the gas permeability and DMA data, respectively. It was found that the organoclay reduced the nonisothermal cold‐crystallization rate of PET chains by restricting the segmental motion of the polymer in the solid state. On the other hand, the organoclay enhanced the nonisothermal melt‐crystallization of PET due to the nucleation effect. Aspect ratio (Af) of the clay layers were found to be about 20 by using the gas permeability and DMA data. Aspect ratio value was also confirmed by the analysis of SEM images of the samples. A physical model for the sample microstructure was offered that the stacks with the thickness of 20–30 nm and the lateral size of 400–600 nm, probably consisting of 5–8 layers, were uniformly dispersed in the PET structure. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
Two chemically modified phenolic resins (PFs) designed and developed for the matrix resins of organic friction materials were characterized. The braking performance of organic brake pads based on the two modified resins and reinforced with hybrid fibers was investigated on a full‐scale test bench. The results indicate that the modified PF with more internal friction units possessed much higher impact and compression strengths, greater toughness, and better braking stability. We concluded that the matrix resin with more adjustable structural units allowed for an adjustable Young's modulus and dynamic mechanical properties and, hence, could indirectly allow an adjustable friction coefficient for organic brake pads during braking process and, furthermore, enable the optimization of braking stability of the friction couples. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2012  相似文献   

10.
The focus of this research is the study of the microstructures and miscibility at the interface between semi‐crystalline and amorphous PLAs [poly (l ‐lactic acid)(PLLA) with poly (l ,d ‐lactic acid)(PDLLA), respectively]. The blends are prepared through thermal processing (extrusion and hot‐pressing). To increase the area of interface between PDLLA and PLLA, the fibers from PLLA and PDLLA are used. Thermal and microstructures of the blends were studied by differential scanning calorimetry (DSC), polarized optical microscopy (POM), dynamic thermogravimetric analysis(DMA), small‐angle X‐ray diffraction(SAXS) and wide‐angle X‐ray diffraction (WAXD). The two PLAs are miscible in molten state. However, phase separation is detected after various thermal treatments, with PDLLA being excluded from the regions of interlamellar PLLA regions when PDLLA content is low, as determined from X‐ray diffraction studies. The compatibility between the two PLAs is not perfect in the molten state, since enthalpies of the various blends at Tg are lower than any pure PLA material. The semi‐crystalline PLLA fiber can recrystallize alone in the molten amorphous PDLLA, and a higher nuclei density is observed at the interface. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41205.  相似文献   

11.
Incorporating long chain branching (LCB) structure into biodegradable copolyesters can effectively improve their melt strength and film blowing processability. However, branching also results in deterioration of crystallizability which is also important for copolyester properties and processing. In this study, pentaerythritol (PER) was used as branching agent (BA) instead of previous used in‐situ BA, diglycidyl 1,2,3,6‐tetrahydrophthalate (DGT), to synthesize LCB poly(butylene succinate‐co‐terephthalate) (PBST) copolyesters. The chain structure was characterized and the effects of branching on thermal transition, mechanical, and rheological properties were investigated. Similar to DGT, copolymerizing small amount of PER (0.1–0.4 mol %) generates LCB structure and, therefore, improves the melt elasticity or strength and tensile modulus but reduces the elongation at break. Differing from DGT, PER showed higher branching efficiency, and PER‐branched PBSTs exhibited unchanged or even improved crystallization ability compared with linear PBST. The improved melt strength coupled with good crystallizability will endow PER‐branched PBSTs with better film blowing processability. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44544.  相似文献   

12.
Blends of bacterial poly(3‐hydoroxyalkanoate) (PHA) with a medium‐length side chain and polylactide (PLA), and blends of the chemically modified PHA (ePHA) with PLA, were prepared. The morphologies, some physical properties, and thermal behavior of the blends based on PLA were investigated by electron microscopies, testing machines, and a differential scanning calorimeter, respectively. A blend of uncrystallized rubbery second components, PHA and ePHA, produced an increase in the impact toughness of the PLA blends in contrast to a decrease in the tensile strength value. PHA, especially, with an inserted epoxy group side chain was more effective in improving the morphology and the physical properties than PHA. The ePHA particles existed in the PLA domain as a dispersed phase having a size of 0.1–1 μm. The results of the biodegradation test demonstrated that the PLA blends still maintained their biodegradability and were more accessible to hydrolysis and microbial attack, resulting in a greater weight loss than the pure PLA. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2363–2369, 2004  相似文献   

13.
Five kinds of polylactides (PLAs), with different D ‐lactide contents and tacticities, were subjected to high‐speed melt‐spinning experiments. In addition to stereochemical purity, the PLA types differed in molecular mass and molecular mass distribution. The properties of the different PLA materials were characterized by thermogravimetry, differential scanning calorimetry, dynamic mechanical analysis, size exclusion chromatography, and 1H‐NMR and 13C‐NMR spectroscopy. The material was spun with a high‐speed spinning process within the range 2000–5000 m/min. The physical and tensile properties of the fibers were determined. The maximum tensile properties of the fibers were a 300 MPa tenacity at an elongation at break of 30% and a tensile modulus of 6.8 GPa. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 800–806, 2004  相似文献   

14.
Poly(3,4‐ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT:PSS) was blended with polyethylene oxide (PEO) and polyvinyl alcohol (PVA) and composite film was cast. Additional solvents of dimethyl sulfoxide (DMSO) and ethylene glycol (EG) were mixed and their effects on electrical conductivity and structural changes were investigated. The electrical conductivity increased in response to the additional solvent, leading to an increase in the PEDOT ratio relative to the control. PEDOT:PSS/PEO composite film had a much higher electrical conductivity than PEDOT:PSS/PVA. When blended with PEO, the quinoid structure revealed by Raman spectroscopy increased relative to the PVA‐blended case, indicating higher electrical conductivity. The current–voltage response and gas sensitivity showed much better performance in PEDOT:PSS/PEO/DMSO composite film. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42628.  相似文献   

15.
Blend films containing two types of starch, various amounts of methylenediphenyl diisocyanate (MDI), and polylactide were prepared. The effects of MDI level and starch type on the tensile, thermal, and morphological properties of these films were investigated. The MDI amount was varied from 0 to 10 wt % on the basis of gelatinized starch (GS) content, whereas two types of starch (corn and tapioca) were added as fillers. In this study, the blend films were hot‐mixed at 180°C by an internal batch mixer and then compression‐molded to form test specimens. The results show that the addition of MDI as a compatibilizer led to an increase in the tensile properties compared with the uncompatibilized films. Furthermore, the thermal properties indicated some improving interfacial adhesion between the two phases, as evidenced by the morphological results. These behaviors were observed in the blends with both gelatinized tapioca starch and gelatinized corn starch. The different types of starch had no effect on the glass‐transition and melting‐temperature shifts, including water absorption of the blend films. On the other hand, the mechanical properties of the blends with gelatinized corn starch were higher than those of the others. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
We report on the process–structure–property relationships for Poly(lactic acid) (PLA) filaments produced through the spunbond process. The influence of spinning speed, polymer throughput, and draw ratio on crystallinity and birefringence of fibers were evaluated. We established that increasing spinning speed increases crystallinity and birefringence of fibers. We also investigate the role of fiber structures on fiber tensile properties—breaking tensile strength, strain at break, initial modulus, and natural draw ratio. An increase in spinning speed leads to a higher breaking tensile strength, higher initial modulus and lower strain at break. We have shown an almost linear relationship between breaking tensile strength of PLA fibers and birefringence. This indicates that improved tensile properties at high spinning speeds can be attributed to enhanced molecular orientation. The dependency of fiber breaking tensile strength and strain at break on spun orientation were explained with natural draw ratio, as a measure of spun orientation. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44225.  相似文献   

17.
The performance of acrylonitrile–butadiene–styrene (ABS) core–shell modifier with different grafting degree, acrylonitrile (AN) content, and core–shell ratio in toughening of poly(butylene terephthalate) (PBT) matrix was investigated. Results show PBT/ABS blends fracture in ductile mode when the grafting degree is high, and with the decrease of grafting degree PBT/ABS blends fracture in a brittle way. The surface of rubber particles cannot be covered perfectly for ABS with low grafting degree and agglomeration will take place; on the other hand, the entanglement density between SAN and PBT matrix decreases because of the low grafting degree, inducing poor interfacial adhesion. The compatibility between PBT and ABS results from the strong interaction between PBT and SAN copolymer and the interaction is influenced by AN content. Results show ABS cannot disperse in PBT matrix uniformly when AN content is zero and PBT/ABS fractures in a brittle way. With the addition of AN in ABS, PBT/ABS blends fracture in ductile mode. The core–shell ratio of ABS copolymers has important effect on PBT/ABS blends. When the core–shell ratio is higher than 60/40 or lower than 50/50, agglomeration or cocontinuous structure occurs and PBT/ABS blends display lower impact strength. © 2006 Wiley Periodicals, Inc. J Appl PolymSci 102: 5363–5371, 2006  相似文献   

18.
In this article, the influence of the rheological behavior of miscible blends of a linear and a high melt strength, branched, polypropylene (HMS PP), on the cellular structure and mechanical properties of cellular materials, with a fixed relative density, has been investigated. The rheological properties of the PP melts were investigated in steady and oscillatory shear flow and in uniaxial elongation in order to calculate the strain hardening coefficient. While the linear PP does not exhibit strain hardening, the blends of the linear and the HMS PP show pronounced strain hardening, increasing with the concentration of HMS PP. Related to the cellular structure, in general, the amount of open cells, the cell size, and the width of the cell size distribution increase with the amount of linear PP in the blends. Also mechanical properties are conditioned by the extensional rheological behavior of PP blends. Cellular materials with the best mechanical properties are those that have been fabricated using large amounts of HMS PP. The results demonstrate the importance of the extensional rheological behavior of the base polymers for a better understanding and steering of the cellular structure and properties of the cellular materials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42430.  相似文献   

19.
Poly(L ‐lactide‐co‐ε‐caprolactone) [P(LLA‐CL)], which is used in biodegradable biomedical materials such as drug‐delivery systems, surgical sutures, orthopedics, and scaffolds for tissue engineering, has been reported to crystallize upon storage in a dry state even at room temperature; this results in rapid changes in the mechanical properties. In biomedical applications, P(LLA‐CL) is used in the presence of water. This study investigated the effects of water on the crystallization of P(LLA‐CL) at 37°C in phosphate buffered solution, which was anticipated to alter its mechanical properties and hydrolytic degradation behavior. Surprisingly, the crystallinity of P(LLA‐CL) in the presence of water rapidly increased in 6–12 h and then slowly increased up to 120 h. The period of time for the initial rapid crystallization increase in the presence of water was much shorter than that in the absence of water. The obtained information would be useful for the selection, preparation, and use of P(LLA‐CL) in various biomedical applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
DSC and time‐resolved WAXS and SAXS are used to study the structure development during isothermal crystallization of poly(glycolic acid) (PGA) in the temperature range 180–195°C. It is shown that the crystallization rate increases with degree of supercooling in the temperature range of consideration. WAXS and DSC crystallinity measurements agree well and a final crystallinity of 50% is found independently of the crystallization temperature. In‐situ SAXS measurements indicate that for PGA the final crystal thickness approaches a limiting value of 70 Å independent of the crystallization temperature in the range 195–180°C. The material develops a well‐defined lamellar structure during crystallization at the highest crystallization temperature under study (195°C). We show that by increasing the degree of supercooling it is possible to hinder the formation of the lamellar structure and crystals, resulting in a less ordered structure. We report that PGA fibers with elastic modulus in the range 20–25 GPa can be prepared by adequate control of the structure before solid‐state plastic deformation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号