首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An inexpensive and simple method was adopted for the preparation of chitosan beads, crosslinked with glutaraldehyde (GA), for the controlled release of diclofenac sodium (DS). The beads were prepared by varying the experimental conditions such as pH, temperature, and extent of crosslinking. The absence of any chemical interaction among drug, polymer, and the crosslinking agent was confirmed by FTIR and thermal analysis. The beads were characterized by microscopy, which indicated that the particles were in the size range of 500–700 μm and SEM studies revealed smooth surface and spherical shape of beads. The beads produced at higher temperature and extended exposure to GA exhibited lower drug content, whereas increased drug loading resulted in enhanced drug release. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 211–217, 2007  相似文献   

2.
In this study, a novel paclitaxel (PTX) loaded and a crosslinked solid phospholipid nanoparticles (SLN‐PTX) with negative surface charge was prepared by UV polymerization for drug delivery. Capping of positive charge of zwitterionic lecithin with negative charge of sodium 2‐acrylamido‐2‐methyl‐1‐propanesulfonate (AMPS‐Na) through cation exchange interaction produced a lecithin‐AMPS (L‐AMPS) complex. The amphiphilic and negative charged lipid complex was emulsified in the presence of emulsifier, paclitaxel, initiator, and methacrylated poly ε‐caprolacton‐diol (PCL‐MAC) as a spacer. The colloidal system was subjected to UV‐irradiation to obtain crosslinked nanoparticles. Completion of the UV‐polymerization was monitored with differential scanning calorimetry (DSC), which indicated the disappearance of exothermic peaks of vinyl groups. The nanoparticle system, having an average size of 200 nm, exhibited high drug encapsulation (96%) with negatively charged surface (zeta potential had an average of ?70 mV). PTX release profiles of the crosslinked and uncrosslinked SLN‐PTXs were studied and their pharmacological properties were compared. The crosslinked nanoparticles exhibited more controlled release behavior with longer release time compared to the uncrosslinked ones. In vitro cytotoxicity test was conducted on MCF‐7 human breast adenocarcinoma cell line, which indicated that the crosslinked SLN‐PTXs have a potential therapeutic effect for breast cancer treatments. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44105.  相似文献   

3.
A latex‐templating method for synthesizing the core‐shell silica nanoparticles (NPs) with porous shell was developed via biomineralization in the presence of poly[2‐(methacryloyloxy)ethyl] trimethylammonium chloride (pDMC)‐modified polystyrene latex. Calcination of the as‐obtained SiO2 NPs led to the removal of the latex core and consequently to hollow silica NPs with porous shell. In particularly, the microstructure and thickness of silica shell could be controlled by simply changing the reaction parameters of silicification. Furthermore, facile encapsulation of a drug molecules and its sustained release were demonstrated. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44200.  相似文献   

4.
Carboxymethyl sago pulp (CMSP)/pectin hydrogel beads were synthesized by calcium crosslinking and further crosslinked by electron beam irradiation to form drug carrier for colon‐targeted drug. Sphere‐shaped CMSP/pectin 15%/5% hydrogel beads is able to stay intact for 24 h in swelling medium at pH 7.4. It shows pH‐sensitive behavior as the swelling degree increases as pH increases. Fourier transform infrared spectroscopy analysis confirmed the absence of chemical interaction between hydrogel beads and diclofenac sodium. Differential scanning calorimetric and X‐ray diffraction studies indicate the amorphous nature of entrapped diclofenac sodium. The drug encapsulation efficiency is up to about 50%. Less than 9% of drug has been released at pH 1.2 and the hydrogel beads sustain the drug release at pH 7.4 over 30 h. This shows the potential of CMSP/pectin hydrogel beads as carrier for colon‐targeted drug. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43416.  相似文献   

5.
Carboxymethyl chitosan, a water soluble chitosan derivative, was prepared from chitosan using monochloroacetic acid. Carboxymethyl chitosan/cellulose acetate microspheres (CCM) were prepared using the method of W/O/W and emulsification solvent evaporation as drug delivery system. The CCMs prepared were spherical, free‐flowing, and nonaggregated with the smooth appearance and many small pores on the surface. All CCMs prepared had sustained release efficiency for acetaminophen and the optimal formulation was that carboxymethyl chitosan of 2.0% and 1360 KD. In addition, the release rate of drug from CCMs in dilute hydrochloric acid was much slower than that in phosphate buffer saline (pH 6.8) during 24 h. It is illustrated that the drug loaded in CCMs released slower in simulated gastric fluid than that in simulated intestinal fluid. Furthermore, the drug release data showed better fitness with the first order model which indicated that the drug release from CCMs was depended on the drug concentration in the polymeric networks. And the release of drug from CCMs indicated diffusion‐controlled drug release based on Fickian diffusion and accompanied with anomalous transport (i.e., non‐Fickian diffusion) according to the values obtained from Higuchi model and Peppas models. So it was shown that the CCMs might be an ideal sustained release system for acid‐labile drugs both for the solubility of carboxymethyl chitosan and the release media. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42152.  相似文献   

6.
Surface‐modified poly(d , l ‐lactide)/polycaprolactone/β‐tricalcium phosphate complex scaffold was fabricated in this study and we hypothesized that pliable and mechanical strong scaffold would be achieved by regulation of ternary compositions; while superficial modification strategy conduced to preserve and controlled‐release of bioactive growth factors. Properties of the composite scaffolds were systematically investigated, including mechanical properties, surface morphology, porosity, wettability, and releasing behavior. Moreover, the representative cytokine, recombinant human bone morphogenetic protein‐2 (rhBMP‐2), was loaded and implanted into muscular pouch of mouse to assess bone formation in vivo. Improved osteogenesis was achieved ascribed to both amplified β‐tricalcium phosphate (β‐TCP) content and retarded initial burst release. Particularly, scaffold doped with hydroxypropyl methylcellulose (HPMC) displayed optimal osteogenic capability. The results indicated that the PDLLA/PCL/β‐TCP complex scaffold along with HPMC‐coating and rhBMP‐2 loading was a promising candidate for bone regeneration. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40951.  相似文献   

7.
Undecenoic acid functionalized thermo/pH responsive microgels, poly(N‐vinylcaprolactam‐co‐undecenoic acid) [poly(VCL‐co‐UA)], were synthesized by precipitation emulsion copolymerization. The microgels exhibit reversible thermo/pH responsive phase transition behavior, which can be tuned by varying the monomer feed ratio. The lower critical solution temperatures (LCSTs) of the materials are close to body temperature. As a result, when temperatures rise above ca. 37°C, a rapid thermal gelation process occurs, accompanied by a phase transition, resulting in expulsion of encapsulated compound. In vitro experiment evaluated its applicability as a drug carrier for controlled release of an anticancer agent (doxorubicin) and showed that the drug encapsulation efficiency (EE), releasing rate, and kinetics are dependent on the temperature and pH value as expected. Minimal cytotoxicity of the microgels was observed by a cytotoxicity assay using 3T3 fibroblast cells. Our finding suggests that the poly(VCL‐co‐UA) based microgels may be considered a promising candidate for temperature or pH‐controlled delivery of anticancer drugs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41146.  相似文献   

8.
Temperature, pH, and reduction triple‐stimuli‐responsive inner‐layer crosslinked micelles as nanocarriers for drug delivery and release are designed. The well‐defined tetrablock copolymer poly(polyethylene glycol methacrylate)–poly[2‐(dimethylamino) ethyl methacrylate]–poly(N‐isopropylacrylamide)–poly(methylacrylic acid) (PPEGMA‐PDMAEMA‐PNIPAM‐PMAA) is synthesized via atom transfer radical polymerization, click chemistry, and esterolysis reaction. The tetrablock copolymer self‐assembles into noncrosslinked micelles in acidic aqueous solution. The core‐crosslinked micelles, shell‐crosslinked micelles, and shell–core dilayer‐crosslinked micelles are prepared via quaternization reaction or carbodiimide chemistry reaction. The crosslinked micelles are used as drug carriers to load doxorubicin (DOX), and the drug encapsulation efficiency with 20% feed ratio reached 59.2%, 73.1%, and 86.1%, respectively. The cumulative release rate of DOX is accelerated by single or combined stimulations. The MTT (3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) assay verifies that the inner‐layer crosslinked micelles show excellent cytocompatibility, and DOX‐loaded micelles exhibit significantly higher inhibition for HepG2 cell proliferation. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46714.  相似文献   

9.
Drug release from poly(lactide‐co‐glycolide) (PLGA) microspheres is strongly determined by the pore structure of the particles. This study examines how swelling‐induced pore constriction delays the drug release and by which factors this process is controlled. Combination of different porosimetric and pycnometric methods enabled insight into the submicroscopic range of the pore structure and revealed that remarkably the polymer free volume plays a crucial role in drug release from PLGA microspheres. Surprisingly, the latter was shown to be inversely correlated to the degree of diffusional drug release. This can be explained by a swelling‐induced constriction of the macroporous channel system in the microspheres which is related to the availability of free volume. The hole free volume was shown to be well controllable by the manufacturing conditions. Thus, the study deepens comprehension of the mechanism of drug release from biodegradable microparticles and offers an effective approach for controlling the release behavior. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39740.  相似文献   

10.
The inflammation and pain associated with osteoarthritis are treated with nonsteroidal anti‐inflammatory drugs (NSAIDs). This treatment is accompanied by several side effects; therefore local intra articular (IA) NSAID injection can be more efficient and safe than systemic administration or topical use. In this study, alginate?chitosan?pluronic nanoparticles were considered as a new vehicle for IA meloxicam delivery. These novel nanoparticles were prepared using an ionotropic gelation method and were optimized for variables such as alginate to chitosan mass ratio, pluronic concentration, and meloxicam concentration using a 3‐factor in 3‐level Box‐Behnken design. To optimize the formulation, the dependent variables considered were particle size, zeta potential, entrapment efficiency, and mean dissolution time (MDT). The nanoparticles morphology was characterized by FESEM and AFM. The potential interactions of the drug‐polymers were investigated by ATR‐FTIR and DSC, and the delivery profile of meloxicam from the nanoparticles was obtained. The average particle size of the optimized nanoparticles was 283 nm, the zeta potential was ?16.9 mV, the meloxicam entrapment efficiency was 55%, and the MDT was 8.9 hours. The cumulative released meloxicam amount from the composite nanoparticles was 85% at pH 7.4 within 96 h. The release profile showed an initial burst release followed by a sustained release phase. The release mechanism was non‐Fickian diffusion. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42241.  相似文献   

11.
The aim of this study was to prepare and investigate the physical properties of a thermosensitive crosslinked chitosan pregel solution, and evaluate the in vitro release profiles of macromolecules from this sol–gel transition system. Chitosan and poly (vinyl alcohol) were used to form an interpenetrating polymeric network with glutaraldehyde as the crosslinker, and glycerophosphate (GP) was added to transform the pH‐dependent solutions into thermosensitive pH‐dependent solutions. Rheological study showed that the gelation was dependent on the crosslink degree and GP concentration of the solution. The crosslinked gel had excellent mechanic properties and no apparent “pores” and formed an integrated hydrogel texture according to scanning electronic micrograph. Gas chromatography test guaranteed the medication safety with no detection of glutaraldehyde remnants in the hydrogels. In vitro release study showed that the gelation does not significantly affect the macromolecules diffusion but the crosslinking degree does. These results indicated that the hydrogel formed an intensified three‐dimensional hybrid network with interpenetrating molecules, which effectively buffered or delayed the macromolecules diffusion. The hydrogels sustained the drug release over 30 days and could be potentially used as in situ gelling implants. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1892–1898, 2006  相似文献   

12.
To prolong erythromycin (EM) release and prevent the side effects of EM, a Pluronic F‐127 diacrylate macromer (PF127) was synthesized and then self‐assembled into micelles with their hydrophobic cores loaded with EM. The EM‐loaded micelles were mixed with a photoinitiator to form the EM/PF127 hydrogels rapidly under a low‐intensity UV light. Afterward, the hydrogel properties, antibacterial performance, and cytotoxicity of this novel hybrid hydrogel were investigated. The results show that the EM/PF127 hydrogel had a rapid gelation time. The sustained release of EM reduced its side effects. With controlled antibacterial activity, the use of EM would be safer and more efficient. What is more, the EM/PF127 hydrogel showed a slight cytotoxicity, and this suggests great potential application as antibacterial hydrogels in the prevention of postoperative infection. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40438.  相似文献   

13.
In order to deliver bioactive components to the colon, an oral colon‐targeted bioadhesive microparticle delivery system based on pectin was developed. Unmodified pectin exhibited a poor hydrophobicity and weak tablet‐crushing strength. Pectin was modified by an amide reaction, which results in a dramatic decrease in water solubility and viscosity, as well as favorable controlled release properties. Amide pectin (AP) were characterized by Fourier transform infrared spectroscopy (FTIR), Nuclear magnetic resonance (1H‐NMR), and Differential scanning calorimetry (DSC). Results of FTIR and 1H‐NMR revealed that amide groups were introduced into the pectin molecules; DSC analysis exhibited that the thermal stability of pectin was decreased. An in vitro release assay demonstrated that matrix tablets prepared by AP could deliver bioactive components to the colon when the pectin content and hydrophobicity were properly controlled. The relationship between the structure and in vitro release properties of amide pectin suggests that an optimal tablet structure and composition can be responsible for a suitable BSA release rate. The optimal tablets making conditions were using methylcellulose (MC) as tablet adhesive, amidation reaction time of 60 min, drug loading of 0.008 g and tableting pressure of 8 kg/mm. The results indicated that matrix tablets made by AP exhibited good colon‐targeted drug release. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43697.  相似文献   

14.
The current study deals with the development of lanolin‐based emulsion gels by hot emulsification method. Bright‐field, phase contrast, and fluorescent micrographs of the gels have shown the uniform distribution of circular water droplets in the formulations. Coalescence of water droplets was observed in gels containing higher proportion of water. Fourier transform infrared spectrophotometric studies indicated absence of Ln‐drug chemical interactions. X‐ray diffraction studies suggested an increase in amorphousness of the gels with the incorporation of water into the gel structure. The salicylic acid (SA), model drug, release from the gels was found to follow Higuchi kinetics. Krossmeyer–Peppas model fitting indicated non‐Fickian release of the drug. As the water content of the gels increased, there was a corresponding increase in the rate of release of the drug. The gels showed non‐Newtonian and thixotropic flow behavior. The gel to sol transition and melting temperatures of the gels were identified by differential scanning calorimetric (DSC) thermal analysis and falling ball method. DSC thermograms indicated an increase in thermal stability with the increase of water content in the gels. The gels showed sufficient spreadability and biocompatibility characteristics to be used as topical formulations. SA loaded gels showed good antimicrobial efficacy against Bacillus subtilis, a Gram‐positive bacterium. Based on the preliminary studies, the developed gels may be regarded as carriers in topical drug delivery. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
The objective of this study was to obtain antibacterial active chitosan/poly(ethylene glycol) diacrylate macromere (CS/PEGM) semi‐IPN hydrogels near a neutral pH level by changing their pore size and morphology. These hydrogels were prepared from CS and PEGM with different molecular weights in the presence of pore‐forming agents, poly (ethylene glycol) (PEG) or sodium bicarbonate (NaHCO3), by using two different initiator system, namely chemical or UV. A combination of CS with PEG or NaHCO3 in the presence of PEGM could be able to create desired pore formation in both initiator systems. The antibacterial activity of hydrogels changed with the molecular weight (g/mol) of PEGM in the order 2000>400>8000. A chemical initiation system was found more suitable than the UV initiation system for antibacterial activity. Hydrogels showing the highest antibacterial activity on Staphylococcus aureus and Escherichia coli have medium or distributed pore size and interconnected pores. Hydrogels prepared with PEGM (Mn: 2000 g/mol) were proposed for antibacterial wound dressing and soft tissue regeneration applications owing to their antibacterial activity and elastic modulus. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42707.  相似文献   

16.
The purpose of this study was to develop and characterize chemically crosslinked chondroitin sulfate‐co‐poly(methacrylic acid) (CSMA) hydrogels for colon targeting of oxaliplatin (OXP) to treat colorectal cancer. CSMA hydrogels were synthesized by free‐radical polymerization. Chondroitin sulfate was chemically crosslinked with methacrylic acid in an aqueous medium. Ammonium peroxodisulfate and N,N‐methylene bisacrylamide were used as the initiator and crosslinker, respectively. Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, X‐ray diffraction, and scanning electron microscopy studies were performed to characterize the fabricated polymeric system. The pH‐sensitive characteristics of the hydrogels were evaluated by swelling dynamics and equilibrium swelling ratio measurements at pH 1.2 and 7.4. A toxicity study of the developed formulations was also conducted on rabbits to determine the toxicity of the drug‐carrier system to the biological system. The characterization studies confirmed the formation of a new polymeric network. A high OXP loading and higher drug release was observed at pH 7.4. The toxicity study confirmed that the developed formulations were nontoxic to the biological system. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45312.  相似文献   

17.
In order to develop a potential drug sustained delivery carrier suitable for wound healing, a series of β‐cyclodextrin conjugated hyaluronan hydrogels (β‐CD‐HA) with adjustable crosslink densities were synthesized and characterized, meanwhile the delivery kinetics and mechanism of diclofenac as a model anti‐inflammatory drug from these hydrogels were investigated. By controlling the feeding molar ratio of β‐CD/HA, a β‐CD substitution degree of 4.65% was obtained by 1H‐NMR analysis. The incorporation of β‐CD modification had little effect on the internal porous structure, water swelling ratio, and rheological property of HA hydrogel, which however were influenced by the crosslink density. Although the crosslink density had an influence on the drug loading and release profile by altering the water swelling property, the interaction between β‐CD and drug was the primary factor for the high loading capacity and long‐term sustained delivery of diclofenac. The semiempirical equation fit showed that the release of diclofenac from HA‐based hydrogels followed a pseudo‐Fickian diffusion mechanism. By the aid of β‐CD and controlled crosslink density, a β‐CD‐HA hydrogel with a diclofenac sustained delivery period of over 28 days and desirable physicochemical properties was achieved, which will be a promising drug sustained delivery carrier for wound healing. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43072.  相似文献   

18.
To improve the efficacy of salmon calcitonin (SCT) on disuse osteoporosis‐induced bone fracture, the sustained‐release vehicles delivered to bone fractures should be developed. In this study, SCT‐loaded poly(d ,l ‐lactic‐co‐glycolic acid) microspheres (SCT‐PLGA MS) with 20 kDa‐COOH and 40 kDa‐COOH (SCT‐PLGA‐20 COOH MS and SCT‐PLGA‐40 COOH MS) are incorporated into calcium phosphate cement (CPC) at various mass ratios. The cumulative release and mechanical properties of SCT‐PLGA MS/CPC composites decrease as PLGA MS/CPC mass ratio increase. Scanning electron microscopy images and the mass loss of composites indicate the MS from 20% SCT‐PLGA MS/CPC composites have mostly degraded after 8 weeks. In addition, SCT released from the 20% SCT‐PLGA‐20 MS/CPC composites significantly facilitate proliferation and differentiation of MC3T3‐E1 cells. In conclusion, 20% SCT‐PLGA‐20 COOH MS/CPC composites exhibit the sustained drug release, proper CPC degradation, good mechanical properties, and preferable osteoblast proliferation, which would be beneficial to their in vivo applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45486.  相似文献   

19.
A series of nanocomposite scaffolds of poly(?‐caprolactone) (PCL) and starch with a range of porosity from 50 to 90% were fabricated with a solvent‐casting/salt‐leaching technique, and their physical and mechanical properties were investigated. X‐ray diffraction patterns and Fourier transform infrared spectra confirmed the presence of the characteristic peaks of PCL in the fabricated scaffolds. Microstructure studies of the scaffolds revealed a uniform pore morphology and structure in all of the samples. The experimental measurements showed that the average contact angle of the PCL/starch composite was 88.05 ± 1.77°. All of the samples exhibited compressive stress/strain curves similar to those of polymeric foams. The samples with 50, 60, 70, and 80 wt % salt showed compressive‐load‐resisting capabilities in the range of human cancellous bone. With increasing porosity, a significant decrease in the mechanical properties of the scaffolds was observed. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43523.  相似文献   

20.
With the growing number of therapeutic proteins on the market, effective delivery systems are receiving particular attention. In this study, biodegradable elastomers, intended for protein drug delivery and based on methacrylic tripoly(ε‐caprolactone‐co‐d ,l ‐lactide) cyclic ester with different ratios of ?‐caprolactone to d ,l ‐lactide and methacrylic bipoly[?‐caprolactone‐b‐poly(ethylene glycol)‐b‐?‐caprolactone], were synthesized and characterized. The degradation behavior, bovine serum albumin (BSA)‐releasing kinetics, and cytotoxicity of the elastomers in vitro were investigated. The elastomers were degraded by the hydrolysis of the ester bond; this resulted in pH changes, which further affected the degradation rate. The BSA‐releasing behavior was strongly dependent on the diffusion mechanism. In the diffusion‐controlled period, nearly sustained and stable BSA release was achieved. Furthermore, the elastomers displayed good biocompatibility, as demonstrated by a 3‐(4,5‐dimethyl thiazol‐2‐yl)?2,5‐diphenyl tetrazolium bromide assay and inflammation–induction experiments, and are considered promising candidates for the controllable delivery of protein drugs. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43393.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号