首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this contribution, 2‐(9H‐carbazol‐9‐yl) ethyl methacrylate (CzEMA) monomer was chemically synthesized. The monomer characterization was performed by FT‐IR, 1H‐NMR, 13C‐NMR, and melting point analysis. The electropolymerization of CzEMA was studied onto carbon fiber microelectrodes (CFMEs) as an active electrode material in 0.1M sodium perchlorate (NaClO4)/acetonitrile (ACN) solution. The electropolymerization experiments were done from 1 mM to 10 mM. The detailed characterization of the resulting electrocoated Poly (CzEMA)/CFME thin films was studied by various techniques, i.e., cyclic voltammetry (CV), Scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The effects of initial monomer concentrations (1, 3, 5, and 10 mM) during the preparation of modified electrodes were examined by EIS. Capacitive behaviors of modified CFMEs were defined via Nyquist, Bode‐magnitude, and Bode‐phase plots. Variation of capacitance values by initial monomer concentration and specific capacitance values are presented. The highest specific capacitance value electrocoated polymer thin film by CV method in the initial monomer concentration of 5 mM with a charge of 52.74 mC was obtained about 424.1 μF cm?2. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Composites of polyaniline in its emeraldine base form (PANI‐EB) and photo‐acid generators (PAG) show an increase in conductivity upon photo‐irradiation due to the protonation of PANI‐EB. Such materials may be utilized to fabricate conducting patterns by photo‐irradiation. However, the conductivity obtained by direct irradiation of PANI‐EB/PAG composites was normally quite low (<10?3 S/cm) due to aggregation of highly loaded PAG. In this work, poly(ethylene glycol) (PEG), which is a proton transfer polymer, was added to PANI‐EB/PAG. Results showed that addition of low Mw (550) PEG significantly enhance the photo‐induced conductivity. Conductivities as high as 10?1–100 S/cm were observed after photo‐irradiation. This conductivity is comparable to that of PANI‐salt synthesized by oxidizing aniline in the presence of an acid. High Mw (8000) PEG is much less effective than PEG 550, which is attributed to its lower compatibility with PANI. PEG‐grafted PANI (N‐PEG‐PANI) was also studied as an additive. Composites of PANI‐EB and N‐PEG‐PANI showed conductivity as high as 102 S/cm after treatment with HCl vapor. The photo‐induced conductivity of the N‐PEG‐PANI/PANI‐EB/PAG composite reached 10?2–10?1 S/cm. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
A one‐step electrode surface modification is proposed in which a disposable, screen‐printed carbon electrode is functionalized with carbonized, electrospun polyacrylonitrile (PAN)‐loaded graphene (G) nanoparticles to form a composite, CPAN5G‐4x. The electrochemical behavior of the CPAN5G‐4x electrode was examined by cyclic voltammetry and electrochemical impedance spectroscopy. Scanning electron microscopy and X‐ray diffraction were used to characterize the surface morphology and physical properties of the carbonized composite nanofibers before and after modification. The modified electrode was found to be effective for the detection of dopamine (DA) using square‐wave voltammetry (SWV) in the presence of interfering substances such as ascorbic acid and uric acid. With the addition of sodium dodecyl sulfate (SDS) to an optimized solution of phosphate‐buffered saline (PBS) at a pH of 2, the fabricated electrode exhibited enhanced electrocatalytic activity toward the oxidation of DA relative to PBS without SDS at a pH of 7.4. The SWV current displayed a linear response to DA concentrations ranging from 0.5 to 100 μM, with a limit of detection of 70 nM (S/N = 3) and a sensitivity of 1.4258 μA μM?1 cm?2. Finally, the CPAN5G‐4x electrode was used to determine DA levels in human serum. The modified electrode can potentially be harnessed for further electrochemical biosensor applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40858.  相似文献   

4.
Polyaniline nanofibers (PANI‐NFs) web are fabricated by electrospinning and used as electrode materials for supercapacitors. Field‐emission scanning electron microscope micrographs reveal nanofibers web were made up of high aspect ratio (>50) nanofibers of length ~30 μm and average diameter ~200 nm. Their electrochemical performance in aqueous (1M H2SO4 and Na2SO4) and organic (1M LiClO4 in propylene carbonate) electrolytes is compared with PANI powder prepared by in situ chemical oxidative polymerization of aniline. The electrochemical properties of PANI‐NFs web and PANI powder are studied using cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. PANI‐NFs web show higher specific capacitance (~267 F g?1) than chemically synthesized PANI powder (~208 F g?1) in 1M H2SO4. Further, PANI‐NFs web demonstrated very stable and superior performance than its counterpart due to interconnected fibrous morphology facilitating the faster Faradic reaction toward electrolyte and delivered specific capacitance ~230 F g?1 at 1000th cycle. Capacitance retention of PANI‐NFs web (86%) is higher than that observed for PANI powder (48%) indicating the feasibility of electro spun PANI‐NFs web as superior electrode materials for supercapacitors. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
The hydrogen bonding between phenolic compounds (phenol (Ph), catechol (Ct), resorcinol (Rs), and hydroquinone (Hq)) is investigated at pH 4. The oxidation behaviors of total phenolic compounds (TotPh) are different from their individual behaviors due to the existence of intermolecular hydrogen‐bonded oligomeric clusters. Theoretical calculations and voltammetric and spectroscopic evidences support the intermolecular hydrogen bonding. The interaction of the phenolic compounds with polyaniline (PANI) and poly(vinylferrocenium) (PVF+) films are also investigated electrochemically and spectroscopically. The phenolic molecules are immobilized in both polymers due to the construction of hydrogen bonds by PANI and the complexation with PVF+. In addition, Ct and Hq are catalytically oxidized by PANI. Determinations of Ct and TotPh are performed on PVF+–PANI composite ‐ coated Pt electrode using amperometric It method. Composite coating exhibits significant electrochemical activity toward Ct and TotPh, with high sensitivity and a wide linearity range. The steady‐state currents versus concentration of Ct and TotPh are found to be linear in the range of 1.35 × 10?3?50.0 mM and 4.10 × 10?4?560 mM for two linear regions, respectively. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43596.  相似文献   

6.
One kind of nanocomposite consisting of graphene and polypyrrole was synthesized via a facile and mild way with the assistant of microwave irradiation. The synthesis route was embedding the polypyrrole into the graphene flakes to form a 3D structure, to achieve larger active surface and higher electro‐catalysis property. Structures and components of the composite were measured by X‐ray diffraction, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy. A stronger electrochemical response of electrode with modified resultant was observed in the electrochemical test. Dopamine sensor based on the composite showed a sensitivity of 363 μA mM ?1 cm?2, a linear range of 1 × 10?4 M to 1 × 10?3 M , and a detection limit of 2.3 × 10?6 M (S/N = 3). © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44840.  相似文献   

7.
A novel amperometric glucose biosensor based on self‐assembling glucose oxidase (GOx) and dendrimer‐encapsulated Pt nanoparticles (Pt‐DENs) on nanofibrous polyaniline (PANI) was described. PANI nanofibers were synthesized via an interfacial polymerization method. A sulfonated polyelectrolytes‐poly(sodium 4‐styrenesulfonate) (PSS) was used to form the negative PANI/sulfonated polyelectrolyte complex, which had good disperse in aqueous solution. GOx was immobilized on the PANI/PSS surface by alternatively assembling a cationic Pt‐DENs layer and an anionic GOx layer. The unique sandwich‐like layer structure (Pt‐DENs/GOx/Pt‐DENs/PANI/PSS) formed by self‐assembling provides a favorable microenvironment to keep the bioactivity of GOx and to prevent enzyme molecule leakage. The fabricated Pt‐DENs/GOx/Pt‐DENs/PANI/PSS electrode exhibited excellent response performance to glucose with a detection limit of 0.5 μM, wide linear range from 10 μM to 4.5 mM, short response time within 5 s, improved sensitivity of 39.63 μA/(mM cm2), and good stability (85% remains after 20 days). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
BACKGROUND: A plate‐gap model interpretation of enzymatic reaction kinetics and rotating disc voltammetry were applied for evaluation of the nature of the reaction of the electroreduction of Cr(VI) (as dichromate ions) on a polyaniline (PANI)‐modified glassy carbon (GC) electrode. RESULTS: The kinetic parameters (the maximal current (Vmax) and Michaelis constant (KM)) for electroreduction of Cr(VI) on the PANI‐modified GC electrode were determined as Vmax = 0.34 × 10?7 mol cm?3 s?1 and KM = 0.47 × 10?6 mol cm?3. The reduction of dichromate is intensified by PANI film growth. CONCLUSION: To characterise the electroreduction of Cr(VI) on a PANI‐modified GC electrode, the kinetic parameters of the reaction were determined using a plate–gap model interpretation of enzymatic reaction kinetics and rotating disc voltammetry. The catalytic nature of Cr(VI) electroreduction on the PANI‐modified electrode has been shown. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
To improve the performance of ion‐exchange polymer–metal composite (IPMC) actuators, an electrical pathway material for enhancing the surface adhesion between the membrane and the metal electrodes of the IPMC was studied. As an efficient electrical pathway material, polyaniline nanorods (PANI‐NRs) doped with p‐toluene sulfonic acid (TSA) were synthesized with a template‐free method. The factors affecting polyaniline morphology were studied with various dopant concentrations and oxidant feeding rates. Highly conductive PANI‐NRs were formed when they were synthesized with ammonium persulfate at a 5.0 mL/min oxidant feeding rate and doped with 0.125M TSA. The conductivity of the PANI‐NRs was 1.15 × 10?1 S/cm, and their diameters and lengths were 120–180 nm and 0.6–2 μm, respectively. To apply the membrane as an actuator, perfluorosulfonated ionomer (Nafion)/PANI‐NR blends were prepared by solution blending and casting. The actuating ability of the three‐layered membrane consisting of Nafion/PANI‐NR blends was then examined and compared with that of Nafion only. The actuating ability of the IPMC was improved when Nafion/PANI‐NRs were used as electrical pathways. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
This research focuses on the syntheses of polyaniline with poly(styrenesulfonic acid) and their electrochemical behavior, including absorbance behavior and electrochemical response time of polyaniline‐poly(styrenesulfonic acid) [PANI–PSSA]. The complexes PANI–PSSA were prepared by electrochemical polymerization of monomer (aniline) with PSSA, using indium‐tin oxide (ITO) as working electrode in 1M HCl solution. Polyaniline (PANI), poly(o‐phenetidine)–poly(styrenesulfonic acid) [POP–PSSA], and poly(2‐ethylaniline)–poly(styrenesulfonic acid) [P2E‐PSSA] also were prepared by electrochemical polymerization and to be the reference samples. The products were characterized by IR, VIS, EPR, water solubility, elemental analysis, conductivity, SEM, and TEM. IR spectral studies shows that the structure of PANI–PSSA complexes is similar to that of polyaniline. EPR and visible spectra indicate the formation of polarons. The morphology of the blend were investigated by SEM and TEM, which indicate the conducting component and electrically conductive property of the polymer complexes. Elemental analysis results show that PANI–PSSA has a nitrogen to sulfur ratio (N/S) of 38%, lower than that for POP–PSSA (52%) and P2E–PSSA (41%). Conductivity of the complexes are around 10?2 S/cm, solubility of PANI–PSSA in water is 3.1 g/L. The UV‐Vis. absorbance spectra of the hybrid organic/inorganic complementary electro‐chromic device (ECD), comprising a polyaniline–poly(styrenesulfonic acid) [PANI–PSSA] complexes and tungsten oxide (WO3) thin film coupled in combination with a polymer electrolyte poly(2‐acrylamido‐2‐methyl‐propane‐sulfonic acid) [PAMPSA]. PANI–PSSA microstructure surface images have been studied by AFM. By applying a potential of ~3.0 V across the two external ITO contacts, we are able to modulate the light absorption also in the UV‐Vis region (200–900 nm) wavelength region. For example, the absorption changes from 1.20 to 0.6 at 720 nm. The complexes PANI–PSSA, POP–PSSA, and P2E–PSSA were prepared by electrochemical polymerization of monomer (aniline, o‐phenetidine, or 2‐ethylaniline) with poly(styrenesulfonic acid), using ITO as working electrode in 1M HCl solution, respectively. UV‐Vis spectra measurements shows the evidences for the dopped polyaniline system to be a highly electrochemical response time, recorded at the temperature 298 K, and the results were further analyzed on the basis of the color‐ discolor model, which is a typical of protontation systems. Under the reaction time (3 s) and monomer (aniline, o‐phenetidine, 2‐ethylaniline) concentration (0.6M) with PSSA (0.15M), the best electrochemical color and discolor time of the PANI–PSSA is slower than POP–PSSA complexes (125/125 ms; thickness, 3.00 μm) and P2E–PSSA complexes. Under the same thickness (10 μm), the best electrochemical color and discolor time of the PANI–PSSA complexes is 1500/750 ms, that is much slower than P2E–PSSA complexes (750/500 ms) and POP–PSSA complexes (500/250 ms). In film growing rate, the PANI–PSSA complexes (0.54 μm/s) are slower than P2E–PSSA complexes (0.79 μm/s) and POP–PSSA complexes (1.00 μm/s), it can be attributed to the substituted polyaniline that presence of electro‐donating (? OC2H5 or ? C2H5) group present in aniline monomer. The EPR spectra of the samples were recorded both at 298 K and 77 K, and were further analyzed on the basis of the polaron–bipolaron model. The narrower line‐width of the substituted polyaniline complexes arises due to polarons; i.e., it is proposed that charge transport take place through both polarons and bipolarons, compared to their salts can be attributed to the lower degree of structural disorder, the oxygen absorption on the polymeric molecular complexes, and due to presence of electro‐donating (? OC2H5 or ? C2H5) group present in aniline monomer. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100:4023–4044, 2006  相似文献   

11.
Polyaniline/tailored carbon nanotubes composite (PANI/TCN) synthesized via situ polymerization of aniline monomer in the presence of tailored carbon nanotubes (TCN) is reported as electrode material for supercapacitors. The morphology, structure, and thermostability of the composite were characterized by scanning electron microscope, Fourier transform infrared, and thermogravimetric analysis. The electrochemical property of the resulting material was systematically studied using cyclic voltammetry and galvanostatic charge–discharge. The results show that the short rod‐like PANI dispersed well in the TCN with three‐dimensional network structure. The as‐prepared composite shows high specific capacitance and good cycling stability. A specific capacitance of 373.5 F g?1 at a current density of 0.5 A g?1 was achieved, which is much higher than that of pure PANI (324 F g?1). Meanwhile, the composite retains 61.7% capacity after 1000 cycles at a scan rate of 50 mV s?1. The enhanced specific capacitance and capacity retention indicates the potential of composite as a promising supercapacitor electrode material. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 39971.  相似文献   

12.
In this research, Ag/Polyaniline (PANI) nanocomposites were synthesized successfully by the chemical oxidative polymerization of aniline in the presence of 4‐aminothiophenol (4‐ATP) capped colloidal Ag nanoparticles (NPs). First, Ag colloidal NPs were prepared by borohydride reduction of AgNO3 in the presence of 4‐ATP as a stabilizer. Then, polymerization of aniline in the presence of Ag NPs was carried out by ammonium persulfate as an oxidant at room temperature. TEM, SEM, XRD, FTIR, EDX, TGA, and UV–vis studies were done for the morphological, structural, thermal, and optical characterization of the Ag/PANI nanocomposite. Furthermore, Ag/PANI nanocomposites were immobilized on the surface of a glassy carbon electrode (GCE) and electroactivity behavior was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The obtained Ag/PANI modified GCE showed high catalytic activity for the oxidation of dopamine (DA) and tyrosine (Tyr). The peak current of differential pulse voltammograms of DA and Tyr increased linearly with their concentration in the ranges of 2.17–5.74 μM Tyr and 18.5–72.2 μM DA. The detection limits for DA and Tyr were 0.002 and 0.009 μM, respectively. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2780–2789, 2013  相似文献   

13.
A new highly selective electrochemical sensor for the determination of l ‐tryptophan was proposed by modifying the surface of screen‐printed carbon electrodes (SPCEs). The surface of SPCE was firstly modified by electropolymerization of p‐phenylenediamine (PPD). The polymer film was then covalently linked with cysteamine capped cadmium sulfide quantum dots (Cys‐CdS QDs) by using glutaraldehyde (GA) as a cross‐linker resulted in an organic–inorganic hybrid composite film (QDs/GA/PPD/SPCE). The modified electrode was applied as a working electrode for detecting various amino acids. It was found that the modified electrode gave an electrochemical response selectively to l ‐tryptophan over other amino acids. The experimental parameters, including pH of solution, buffer types, electropolymerization cycles, scan rate, and accumulation time, were studied and optimized. The proposed sensor can be used to detect l ‐tryptophan with a low detection limit of 14.74 µmol L?1 with good precision and the relative standard deviation less than 3.7%. The modified electrode was used to detect l ‐tryptophan in beverage samples and gave satisfactory recoveries from 91.9 to 104.9%. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40356.  相似文献   

14.
This article discusses the results for the development of a nanogold‐particle/polyaniline‐modified glassy carbon electrode for the detection of arsenic(III) in water. A thin polyaniline film was electropolymerized onto a glassy carbon electrode. The gold nanoparticle was then deposited onto the polyaniline‐coated glassy carbon electrode via potential step electrolysis from 1.1 to 0 V versus Ag/AgCl/NaCl (saturated) for 45 s from a 0.5M H2SO4 solution containing 0.1 mM NaAuCl4 in the absence and presence of a 0.1 mM KI additive. The surface of the modified electrode was examined with scanning electron microscopy. Cyclic and anodic stripping voltammetry of arsenic(III) was performed on the modified electrode. The thus modified nanogold‐particle/polyaniline‐modified glassy carbon electrode prepared in the presence of the I? (KI) additive showed a high sensitivity in detecting arsenic(III) in water, and with stripping voltammetry, a limit of detection of 0.4 ppb arsenic was obtained, which is much lower than the arsenic guideline limit of the World Health Organization. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1306–1311, 2007  相似文献   

15.
Conducting polymers such as polyaniline and polypyrrole exhibit novel sensoric properties and are able to interact chemically or electrochemically with the species of interest for detection. In the current investigation, construction of a sensor based on an electrochemical reaction between CrVI and a thin layer of polyaniline, coated at the surface of quartz crystal electrode, is reported. Polyaniline was synthesized, electrochemically, at the surface of quartz crystal electrode. It was then reduced at ?0.1 V versus Ag/AgCl. The modified electrode was exposed to various concentrations of CrVI solutions ranging from 10?7 to 10?1M. Mass changes of the polymer‐modified electrode due to the reaction between CrVI and polyaniline was found to be linear, corresponding to the concentration of CrVI. The experiments in both acidic and nonacidic conditions were performed. In both conditions, linear double‐loga thmic calibration curves of mass change of the polymer film versus CrVI concentration were obtained. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2772–2780, 2002  相似文献   

16.
The electrochemical properties of neutral (dedoped) and oxidized (doped) poly(1,11‐bis(1,1‐pyrrole)‐3,6,9‐trioxaundecane) (poly‐ I ) film electrodes were investigated using cyclic voltammetry and electrochemical impedance spectroscopy (EIS) techniques. Poly‐ I was deposited on glassy carbon electrode (GCE) from acetonitrile solution containing 5.0 × 10?3M 1,11‐bis(1,1‐pyrrole)‐3,6,9‐trioxaundecane ( I ) and 0.1M LiClO4 supporting electrolyte. Doped poly‐ I exhibits a single semicircle in its complex‐capacitance plots, indicating a single dominant ion transport process, together with high capacitance values. These features make this polymer film a candidate for an energy storage material. Also, poly‐ I can be a candidate as a sensory material for the detection of Ag+ based on impedance parameters. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

17.
In this work, graphitized mesoporus carbon (GMC) was used to increase the specific capacitance and cycle stability of polyaniline (PANI). Hybrid material of polyaniline‐graphitized mesoporus carbon (GMCP) was prepared by in situ chemical polymerization of aniline in presence of sulphuric acid using ammonium persulfate oxidant with various amounts of GMC. Formation of hybrid sample was confirmed from X‐ray diffraction, and the composite sample was stable up to 250°C. Morphology, crystalline nature, and electrochemical performance of GMCP were compared with that of its individual components, GMC and PANI. GMC showed particle morphology and PANI showed nanofiber morphology. GMCP2 composite showed nanofibrous form of PANI grown on GMC (spherical form) along with PANI nanofibers. Higher crystallinity was obtained for GMCP than that of PANI. Cycling stability of GMCP2 was carried up to 12,000 cycles at 1200 W kg?1 and the retention capacitance was 66% of its original capacitance of 243 F g?1. With the same power density, GMC showed less capacitance value of 53 F g?1 with 92% retention and PANI showed capacitance of 187 F g?1 and it underwent 1500 cycles only. Higher supercapacitor performance was obtained for GMCP composite compared to that of its components, PANI and GMC. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42540.  相似文献   

18.
An uniformly distributed film consisting of polyaniline (PANI) nanoparticles and carboxylic acid functionalized multiwalled carbon nanotubes (MWNTs‐COOH) was successfully assembled on ITO plates from a layer‐by‐layer (LBL) method by using electrostatic interactions as the main driving force. The good conjugation between PANI nanoparticles and MWNTs‐COOH resulted in significant electrochemical performance variation of the obtained films. In addition, the assembled MWNT‐COOH/PANI/ITO showed synergistic effect to the electrochemical oxidation of nifedipine (NIF) when used as a sensor. Compared with bare ITO, the oxidation potential of NIF can be decreased about 170 mV on MWNT‐COOH/PANI/ITO, and the lower detection limit of NIF was as low as 1.0 × 10?6 mol/L. In addition, the assembled electrode gave no responses to interferences such as glucose, urea, ascorbic acid, and trisodium citrate, which showed high selectivity for recognition and quantification of NIF. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43452.  相似文献   

19.
Polyaniline nano‐fibers with thorn surface morphology (T‐PANI) were synthesized by one‐step polymerization with adding additional aniline at later stage of chemical oxidation synthesis. In order to investigate the morphology role in determining electrochemical performance, the nano‐fibers PANI without thorn (PANI) was synthesized by the same polymerization process but at different time to add additional aniline. Material structures were characterized by field emission scanning electron microscope and Brunauer‐Emmett‐Teller method, and electrochemical performance was tested through cyclic voltammograms, galvanostatic charge‐discharge and electrochemical impedance spectroscopy. The data showed that the specific capacitance of T‐PANI was 443 F g?1 at 5 mA cm?2, which was much more than that of PANI (338 F g?1 at 5 mA cm?2). The solution resistance, charge transfer resistance, and diffuse resistance of T‐PANI were also lower than these of PANI. The results indicate that the thorn surface structure plays an important role in determining the electrochemical performance of polyaniline, which attribute to the improvements in pore size, pore distribution, special surface area, and conductivity. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42266.  相似文献   

20.
Poly(N‐acetylaniline)/poly(4‐styrenesulfonic acid‐co‐maleic acid) (PNAANI/PSSMA) composite film was prepared by cyclic voltammetry (CV), and was characterized by FTIR and X‐ray photoelectron spectrum (XPS). The electroactivity of the composite film was high in neutral and basic solutions, and it had been used for amperometric determination of ascorbic acid (AA). Compared with pure PNAANI film, the catalytic activity of the composite film was much better. AA was detected amperometrically in sodium citrate buffer at a potential of 0.3 V (versus SCE). The response current was proportional to the concentration of ascorbic acid in the range of 4.7 × 10?6 to 5.0 × 10?5M and 5.0 × 10?5 to 2.5 × 10?3M, respectively, with the detection limit of 1.9 × 10?6 mol L?1 at a signal to noise ratio 3. In addition, the stability and reusability of the composite film were performed well, and it was satisfying to be used for determination of AA in real fruit juice samples. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号