首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lignin fibers were developed from a commercial available soda hardwood lignin (SHL) with a melt‐spinning approach. SHL showed spinnability to form the fine fibers when poly(ethylene oxide) was used as a plasticizer with lignin. The thermal properties of lignin provided valuable information to assist the processing steps of the lignin fiber formation. The guaiacyl/syringyl ratio in SHL was determined by 31P‐NMR because it had great influence on the thermal mobility of lignin. A suitable temperature profile for the melt spinning was predicted through rheological studies of lignin. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
3.
The possibility of producing carbon fiber from an industrial corn stover lignin was investigated in the present study. As‐received, high‐ash containing lignin was subjected to methanol fractionation, acetylation, and thermal treatment prior to melt spinning and the changes in physiochemical and thermal properties were evaluated. Methanol fractionation removed most of the impurities in the raw lignin and also selectively removed the molecules with high melting points. However, neither methanol fractionation nor thermal treatment rendered melt‐spinnable precursors. The precursors were highly viscous and decomposed easily at low temperatures, attributed to the presence of H, G phenolic units, and abundant hydroxycinnamate groups in herbaceous lignin. A two‐step acetylation of methanol fractionated lignin greatly improved the mobility of lignin, while enhancing the thermal stability of the precursor during melt‐spinning. Fourier Transform Infrared and 2D‐NMR analysis showed that the contents of phenolic and aliphatic hydroxyls, as well as the hydroxycinnamates, decreased in the acetylated precursors. The optimum precursor was a partially acetylated lignin with a glass transition temperature of 85 °C. Upon oxidative stabilization and carbonization, the carbon fibers with an average tensile strength of 454 MPa and modulus of 62 GPa were obtained. The Raman spectroscopy showed the ID/IG ratio of the carbon fiber was 2.53. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45736.  相似文献   

4.
This study has shown that ultrafiltration allows the selective extraction from industrial black liquors of lignin fraction with specific thermo‐mechanical properties, which can be matched to the intended end uses. Ultrafiltration resulted in the efficient fractionation of kraft lignin according to its molecular weight, with an accumulation of sulfur‐containing compounds in the low‐molecular weight fractions. The obtained lignin samples had a varying quantities of functional groups, which correlated with their molecular weight with decreased molecular size, the lignin fractions had a higher amount of phenolic hydroxyl groups and fewer aliphatic hydroxyl groups. Depending on the molecular weight, glass‐transition temperatures (Tg) between 70 and 170°C were obtained for lignin samples isolated from the same batch of black liquor, a tendency confirmed by two independent methods, DSC, and dynamic rheology (DMA). The Fox–Flory equation adequately described the relationship between the number average molecular masses (Mn) and Tg's‐irrespective of the method applied. DMA showed that low‐molecular‐weight lignin exhibits a good flow behavior as well as high‐temperature crosslinking capability. Unfractionated and high molecular weight lignin (Mw >5 kDa), on the other hand, do not soften sufficiently and may require additional modifications for use in thermal processings where melt‐flow is required as the first step. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40799.  相似文献   

5.
The confluence of two US energy policy mandates, the 2012 Corporate Average Fuel Economy Standards and Renewable Fuels Standard #2, provide the opportunity to examine the possibility of high‐value materials from lignin with increased depth. In this case, the desire to provide lighter, low‐cost materials for automobiles to reduce fuel consumption, and to improve the economics of biorefineries for fuel production, have led to an increased interest in low‐cost carbon fiber manufacture from lignin. For this review the authors provide the context of subject matter importance, a cost comparison of potential low‐cost carbon fibers, a brief review of historical work, a review of more recent work, and a limited technical discussion followed by recommendations for future directions. As the available material for review is limited, the author includes many references to publicly available government documents and reviewed proceedings that are generally difficult to locate. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 713‐728, 2013  相似文献   

6.
Organosolv switchgrass lignin (SGL) and hardwood lignin (HWL) polymers are used as precursors to prepare low cost carbon fibers (CFs). Lignin powder and fiber samples are stabilized and carbonized at different conditions to investigate the effect of HCl on thermal‐oxidative stabilization time, mass yield, fiber diameter, and mechanical properties. The results show that HCl can accelerate stabilization and reduce the stabilization time from many hours to 75 min for the SGL fibers, and to 35 min for the HWL fiber. The rate of rapid stabilization in HCl/air is at least four times faster than conventional stabilization in air. The CFs prepared with two different stabilization methods have almost the same strength and modulus, but higher carbon yield is obtained with the rapid stabilization due to a short time of oxidation. Pores and defects observed on the surface and the cross‐section of the CFs across all stabilization conditions contribute to low fiber strength. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45507.  相似文献   

7.
Concurrent improvement of melt processing stability and degradation efficiency of poly(lactic acid) (PLA) is still a challenge for the industry. This article presents the use of phosphites: tris(nonylphenyl) phosphite (TNPP) and tris (2,4-di-tert-butylphenyl) phosphite (TDBP), to control the thermal stabilization, mechanical performance, and hydrolytic degradation ability of the compressed PLA films. The hydrolysis process is followed as a function of time at 45, 60, and 75°C. During melt extrusion, both phosphites function as a processing aid, besides acting as a chain extender stabilizing the PLA molecular weight. The phosphite structure plays a crucial role over crystallinity and water absorption, in controlling the hydrolytic degradation of PLA. The application of TNPP significantly catalyzes the hydrolysis of PLA, which is the initial step of the biodegradation process. The optimum amount of TNPP for best hydrolytic degradation efficiency and thermal stabilization of PLA is 0.5 wt%. The excessive TNPP loadings cause a drastic drop in PLA molecular weight and, as a consequence, a reduction of flexural strength. The reactions between PLA and phosphite molecules are discussed.  相似文献   

8.
Toughened unsaturated polyester resins (UPRs) were prepared using two different reactive rubbers, namely, liquid natural rubber (LNR) and liquid epoxidized natural rubber (LENR). The effect of varying amounts of LNR and LENR on the morphology, thermal, and mechanical properties of UPR were evaluated. Fourier Transform Infrared spectroscopy was used to investigate the probable crosslinking reaction and changes in the functional groups on crosslinking. Field emission scanning electron microscopy and infinite focus microscopy were used to study the morphology of fracture surfaces. Tensile test showed that both the rubber‐modified resins (1.5 wt %) improved tensile strength. The viscoelastic properties and thermal stability of the toughened polyesters were evaluated using dynamic mechanical thermal analysis and thermogravimetric analysis, respectively. A slight reduction in the glass transition temperature (Tg) of the polyester was reported on the addition of both the rubbers. An increment in impact strength and fracture toughness was observed at 1.5 wt % for LNR and 4.5 wt % for LENR‐modified UPR. The results showed that both the liquid rubbers improved the mechanical properties of UPR. However, LENR‐modified UPR exhibited a more significant improvement in the mechanical properties compared to LNR‐modified UPR. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41292.  相似文献   

9.
Second generation bioethanol is produced from lignocellulose which comes from agricultural waste instead of agricultural feedstock. This study utilized the residuals from the extraction of C5 and C6 sugars in the second generation bioethanol while 20 and 40 wt % of the biomass was blended with starch into a starch/biomass foam. After adding the biomass into starch foam, the morphology of the starch foam changed significantly, showing rough surfaces, higher cell densities, as well as smaller cell areas than the starch only foam. Adding the biomass into the starch overall resulted in the reduction of the compressive strength, the stiffness, and the density of the starch foam. The water sensitivity of the starch foam/biomass was reduced by 60%, indicating a significant improvement of the hydrophilic nature of the starch foam. The foam/biomass demonstrated a lower thermal stability than neat starch foam due to the decomposition of the biomass. The study concluded that the biomass from the second generation cellulosic ethanol process possess similar physical, mechanical, and thermal properties as the other starch foam composite, and yet, no additive is required. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41940.  相似文献   

10.
In this work, pyrolytic lignin (PL) was thermally co-treated with polyethylene terephthalate (PET) to produce carbon fiber precursor. The produced PL-PET precursors were thoroughly characterized and analyzed, and then being processed into carbon fiber. It was found that a novel precursor, rather than their physical blending, was formed by the thermal co-treatment, indicating there were strong interactions between PL and PET. The novel PL-PET precursors had enhanced thermal properties and rheological characteristics, therefore are more suitable for processing into better carbon fibers based on melt-spinning method. In this study, the precursor fibers derived from the co-treatment of PL and 5% PET were also stretched under tension during stabilization step to reduce the fiber diameter and improve molecular orientation. The resulting carbon fibers with an average diameter of 12.6 μm had the tensile strength of up to 1220 MPa. This work demonstrated that PET could be used to improve the processability and quality of lignin-based carbon fiber when it is chemically bonded with lignin-based precursor. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48843.  相似文献   

11.
The effects of polyethylene oxide (PEO) molecular weight (Mv), and volume fraction ( ) on the morphology of electrospun sulfur free softwood lignin nanofibers were investigated. Small amounts of PEO were used during preparations of the solutions to aid the electrospinning process. It was found that tripling the PEO volume fraction resulted in a transition from semi‐dilute un‐entangled to semi‐dilute entangled solutions. Conversely, the solution remained in the semi‐dilute un‐entangled regime as the molecular weight was increased by five times. The effects of molecular weight and volume fraction of PEO both on entanglement density and fiber morphology were unified by scaling PEO viscosities as a function of . We investigated and discussed conditions that would produce smooth fibers and conditions that would produce fibers with beads. In the case of beads‐on‐a‐string formation, bead widths remained constant regardless of the molecular weight and concentration of PEO, but the bead length changed. Additionally, we observed a decrease in the diameter of the fibers and the dimension of beads (length and width of beads) with an increase in the electric field used for electrospinning. The aspect ratio of beads increased with increases to both the electric field and the PEO molecular weight or concentration. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44172.  相似文献   

12.
The study examined the effect of different wet spinning parameters (e.g., total solid content, coagulation bath concentration, drawing, and stretching) on the morphology and mechanical properties of the wet spun alpaca/polyacrylonitrile (PAN) composite fibers. The alpaca/PAN composite fibers were wet spun using 10, 20, and 30% of alpaca particles along with the PAN polymer. The shear-thinning or non-Newtonian flow behavior was observed among the dope solutions with different solid content. The cross-sectional fiber morphology showed the bean-shaped characteristic for the control PAN fibers, whereas the alpaca/PAN composite fibers exhibited almost circular shape. “Cavity healing” was observed, where noticeable voids and porous areas were demolished in the cross section of the composite fibers, by changing the total solid content and coagulation bath concentration. Although the control PAN fibers exhibited the highest tenacity with lower fiber diameter, the alpaca/PAN composite fibers showed a gradual deterioration in tenacity while adding alpaca particles into the PAN polymeric matrix. Nevertheless, due to the increment in the total solid content, higher draw ratio, and stretching of the fibers, the tenacity, molecular orientation, and the crystallinity of the composite fibers were increased.  相似文献   

13.
Poly(lactic acid) (PLA) nanofibers, as a biodegradable and environmentally friendly material, have potential applications such as biological medicine, efficient filter material, and so on. PLA nanofibers are usually prepared by solution electrospinning method with toxic solvents, such as chloroform, chloromethane, and N,N‐dimethyl formamide. In this work, PLA nanofibers were fabricated with a self‐designed melt differential electrospinning device, assisted by addition of nontoxic acetyl tributyl citrate (ATBC) and by airflow. Molecular dynamics simulations were performed to understand the experimental results. The results revealed that the fiber diameter decreased with increasing airflow velocity, and fibers with a diameter as small as 236 nm were obtained at the highest airflow velocity of 25 m/s (with 6 wt % of ATBC). Furthermore, a significantly accelerated falling speed of the jets of about 347 times of that without airflow was achieved at a flow rate of 25 m/s. These results demonstrated that the combination of adding ATBC and airflow assistance was a good strategy to achieve finer fibers with improved stability and efficiency, making it a promising way for mass green production of PLA nanofibers. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46554.  相似文献   

14.
Triploid poplar was fractionated using mild organosolv process, and detailed characteristic elucidation of the lignin obtained was performed to determine the effects of various chemicals (sodium hydroxide, triethylamine, and formic acid) and solvents (methanol, ethanol, n‐propanol, and n‐butanol). Both nondestructive techniques (e.g., NMR technology) and degradation methods (e.g., alkaline nitrobenzene oxidation) were performed to comparatively evaluate the structural degradation of lignin molecules. The addition of acidic and basic catalysts improved the purity of lignin by acid hydrolysis and the cleavage of the ester groups and other types of lignin–carbohydrate interactions formed by polyoses and lignin under the basic conditions. A certain amount of aryl alkyl ether linkages (β‐O‐4) was cleaved during the fractionation process, whereas other carbon–carbon linkages were resistant to degradation. The formation of new carbon–carbon bonds led to the lignin fraction with obviously higher molecular weight and thermal stability, resulting from the induced carbon cation under the acidic condition. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39673.  相似文献   

15.
Lignin is a promising candidate for blends with thermoplastic polymers. Still, this endeavour is a challenge due to poor compatibility between both components. In this article, the effect of lignin esterification on the improvement of the compatibility between hardwood Kraft lignin and high‐density polyethylene (PE‐HD) is investigated. For this purpose, lignin was esterified with acetic, propionic, and butyric anhydride; its amount in the blends varied from 10 to 40%. Light microscopic images of blends show a reduction in particle size and a more homogeneous distribution with increasing length of the ester carbon chains (C2 to C4). Modification of lignin enhances the moduli and strength characteristics of the blends. Butyrated lignin performs best, as tensile strength of blends can be retained near that of pure PE‐HD with up to 40% lignin content. An additional investigation of unmodified lignin with reduced particle size confirms that modification is the decisive factor to enhance blend properties; a sole reduction of particle size is insufficient. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44582.  相似文献   

16.
The environmentally friendly esterification of acetosolv lignin (AL), obtained from pressed oil palm mesocarp fibers, is described, for the improvement of thermo‐oxidative properties of poly(methyl methacrylate) (PMMA) films. Acetylation of AL was performed in ecofriendly conditions using acetic anhydride in the absence of catalysts. Acetylated acetosolv lignin (AAL) was successfully obtained in only 12 min with a solvent‐free and catalyst‐free microwave‐assisted procedure. Lignins were characterized by Fourier transform infrared spectroscopy, size exclusion chromatography, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC), confirming the efficacy of the methodology employed. AL and AAL as fillers in different concentrations (1% and 5%) were added to PMMA films. The thermal and mechanical properties of the lignin‐incorporated films were analyzed by TGA, DSC, and dynamic mechanical analysis (DMA). The films incorporated with lignin and acetylated lignin presented initial degradation temperature (Tonset) and onset oxidative temperature (OOT) values higher than pure PMMA films, contributing thus to an enhancement of thermo‐oxidative stability of PMMA. The DMA analyses showed that incorporation of AL or AAL increased the storage modulus (E′) of PMMA films, but did not affect their glass‐transition temperatures (Tg). The results indicate the potential use of oil palm mesocarp lignin to enhance the thermo‐oxidative properties of PMMA without compromising its mechanical response. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45498.  相似文献   

17.
Poly(lactic acid) (PLA) is a biobased polymer made from biomass having high mechanical properties for engineering materials applications. However, PLA has certain limited properties such as its brittleness and low heat distortion temperature. Thus, the aim of this study is to improve toughness of PLA by blending with poly(butylene succinate‐co‐adipate) (PBSA), the biodegradable polymer having high toughness. Polymer blends of PLA and PBSA were prepared using a twin screw extruder. The melt rheology and the thermal property of the blends were examined. Further the blends were fabricated into compression molded parts and melt‐spun fiber and were subjected to tensile and impact tests. When the PBSA content was low, PBSA phase was finely dispersed in the PLA matrix. On the other hand, when the PBSA content was high, this minor phase dispersed as a large droplet. Mechanical properties of the compression molded parts were affected by the dispersion state of PBSA minor component in PLA matrix. Impact strength of the compression molded parts was also improved by the addition of soft PBSA. The improvement was pronounced when the PBSA phase was finely dispersed in PLA matrix. However, the mechanical property of the blend fibers was affected by the postdrawing condition as well as the PBSA content. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41856.  相似文献   

18.
In this research work, biocomposites based on a ternary system containing softwood Kraft lignin (Indulin AT), poly‐L ‐lactic acid (PLLA) and polyethylene glycol (PEG) have been developed. Two binary systems based on PLLA/PEG and PLLA/lignin have also been studied to understand the role of plasticizer (i.e., PEG) and filler (i.e., lignin) on the overall physicomechanical behavior of PLLA. All samples have been prepared by melt‐blending. A novel approach has also been introduced to improve the compatibility between PLLA and PEG by using a transesterification catalyst under reactive‐mixing conditions. In PEG plasticized PLLA flexibility increases with increasing content of PEG and no significant effect of the molecular weight of PEG on the flexibility of PLLA has been observed. Differential scanning calorimetry and size‐exclusion chromatography along with FTIR analysis show the formation of PLLA‐b‐PEG copolymer for high temperature processed PLLA/PEG systems. On the other hand, binary systems containing lignin show higher stiffness than PLLA/PEG system and good adhesion between the particles and the matrix has been observed by scanning electron microscopy. However, a concomitant good balance in stiffness introduced by the lignin particles and flexibility introduced by PEG has been observed in the ternary systems. This study also showed that high temperature reactive melt‐blending of PLLA/PEG leads to the formation of a segmented PLLA‐b‐PEG block copolymer. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
A 32‐full factorial design of experiment (DOE) and regression modeling were implemented together as a practical approach to attain a distillers' grains‐filled biocomposite with balanced mechanical and physical properties. The effects of compatibilizer and lubricant on tensile strength, flexural modulus, impact strength and melt flow index of the biocomposites were studied. Analysis of variance (ANOVA) was implemented to develop least square regression models containing statistically significant main effects (linear and quadratic) and interaction effect. The developed models showed good predictability for the new measurements. The statistical approach adopted in this work including overlaying contour plots of the response surfaces in the studied level domain was effective in highlighting an optimized region that leads to balanced mechanical and physical properties. © 2014 The Authors Journal of Applied Polymer Science Published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40443.  相似文献   

20.
Novatein thermoplastics from bloodmeal (NTP) were blended with linear low‐density polyethylene (LLDPE) using maleic anhydride grafted polyethylene (PE‐g‐MAH) as compatibilizer. The compatibilizing effect on mechanical, morphology, thermal properties, and water absorption were studied and compared with blends without compatibilizer. The amount of polyethylene added was varied between 20 and 70% in NTP with addition of 10% compatibilizer. An improvement in compatibility between NTP and LLDPE was observed across the entire composition range and the difference were more pronounced at higher NTP contents where the tensile strength of blends was maintained and never dropped below that of pure NTP. Theoretical models were compared to the results to describe mechanical properties. A finely dispersed small particles of NTP in compatibilized blends were observed using SEM. Improved compatibility has restricted chain movement resulting in slightly elevated Tg revealed by DMA. On the other hand, water absorption of the hydrophilic NTP has been decreased when blending with hydrophobic LLDPE. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1890–1897, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号