首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
To produce a composite membrane with high conductivity and low permeability, SPPESK with a degree of sulfonation of 101% was carefully selected for the preparation of montmorillonite (MMT)‐reinforced SPPESK using solution intercalation. The fundamental characteristics such as water uptake, swelling ratio, proton conductivity, methanol permeability, and mechanical properties of the composite membranes were studied. Water uptake is improved when organic MMT (OMMT) loading increase. The composite membranes with CTAB‐MMT loading of 4–0.5% show 0.143–0.150 S cm?1 proton conductivity at 80°C, which approaches the value of Nafion112. In addition, methanol permeability was decreased to 6.29 × 10?8 cm2 s?1 by the addition of 6 wt % OMMT. As a result, the SPPESK‐MMT composite membrane is a good candidate for use in direct methanol fuel cells. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39852.  相似文献   

2.
Proton‐exchange membrane fuel cells (PEMFC)s are increasingly regarded as promising environmentally benign power sources. Heterocyclic molecules are commonly used in the proton conducting membranes as dopant or polymer side group due to their high proton transfer ability. In this study, 5‐(methacrylamido)tetrazole monomer, prepared by the reaction of methacryloyl chloride with 5‐aminotetrazole, was polymerized via conventional free radical mechanism to achieve poly(5‐(methacrylamido)tetrazole) homopolymer. Novel composite membranes, SPSU‐PMTetX, were successfully produced by incorporating sulfonated polysulfone (SPSU) into poly(5‐(methacrylamido)tetrazole) (PMTet). The sulfonation of polysulfone was performed with trimethylsilyl chlorosulfonate and high degree of sulfonation (140%) was obtained. The homopolymers and composite membranes have been characterized by NMR, FTIR, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). 1H‐NMR and FTIR confirmed the sulfonation of PSU and the ionic interaction between sulfonic acid and poly(5‐(methacrylamido)tetrazole) units. TGA showed that the polymer electrolyte membranes are thermally stable up to ~190°C. Scanning electron microscopy analysis indicated the homogeneity of the membranes. This result was also supported by the appearance of a single Tg in the DSC curves of the blends. Water uptake and proton conductivity measurements were, as well, carried out. Methanol permeability measurements showed that the composite membranes have similar methanol permeability values with Nafion 112. The maximum proton conductivity of anhydrous SPSU‐PMTet0.5 at 150°C was determined as 2.2 × 10?6 S cm?1 while in humidified conditions at 20°C a value of 6 × 10?3 S cm?1 was found for SPSU‐PMTet2. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40107.  相似文献   

3.
Polymer electrolyte blend membranes composed of sulfonated block‐graft polyimide (S‐bg‐PI) and sulfonated polybenzimidazole (sPBI) were prepared and characterized. The proton conductivity and oxygen permeability coefficient of the novel blend membrane S‐bg‐PI/sPBI (7 wt%) were 0.38 S cm?1 at 90 °C and 98% relative humidity and 7.2 × 10?13 cm3(STP) cm (cm2 s cmHg)?1 at 35 °C and 76 cmHg, respectively, while those of Nafion® were 0.15 S cm?1 and 1.1 × 10?10 cm3(STP) cm (cm2 s cmHg)?1 under the same conditions. The apparent (proton/oxygen transport) selectivity calculated from the proton conductivity and the oxygen permeability coefficient in the S‐bg‐PI/sPBI (7 wt%) membrane was 300 times larger than that determined in the Nafion membrane. Besides, the excellent gas barrier properties based on an acid ? base interaction in the blend membranes are expected to suppress the generation of hydrogen peroxide and reactive oxygen species, which will degrade fuel cells during operation. The excellent proton conductivity and gas barrier properties of the novel membranes promise their application for future fuel cell membranes. © 2015 Society of Chemical Industry  相似文献   

4.
A series of novel composite methanol‐blocking polymer electrolyte membranes based on sulfonated polyimide (SPI) and aminopropyltriethoxysilane (APTES) doping with sulfonated mesoporous silica (S‐mSiO2) were prepared by the casting procedure. The microstructure and properties of the resulting hybrid membranes were extensively characterized. The crosslinking networks of amino silica phase together with sulfonated mesoporous silica improved the thermal stability of the hybrid membranes to a certain extent in the second decomposition temperature (250–400°C). The composite membranes doping with sulfonated mesoporous silica (SPI/APTES/S‐mSiO2) displayed superior comprehensive performance to the SPI and SPI/APTES membranes, in which the homogeneously embedded S‐mSiO2 provided new pathways for proton conduction, rendered more tortuous pathways as well as greater resistance for methanol crossover. The hybrid membrane with 3 wt % S‐mSiO2 into SPI/APTES‐4 (SPI/A‐4) exhibited the methanol permeability of 4.68 × 10?6 cm2 s?1at 25°C and proton conductivity of 0.184 S cm?1 at 80°C and 100%RH, while SPI/A‐4 membrane had the methanol permeability of 5.16 × 10?6 cm2 s?1 at 25°C and proton conductivity of 0.172 S cm?1 at 80°C and 100%RH and Nafion 117 exhibited the values of 8.80 × 10?6 cm2 s?1 and 0.176 S cm?1 in the same test conditions, respectively. The hybrid membranes were stable up to about 80°C and demonstrated a higher ratio of proton conductivity to methanol permeability than that of Nafion117. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
Proton exchange membranes (PEMs) based on blends of poly(ether sulfone) (PES) and sulfonated poly(vinylidene fluoride‐co‐hexafluoropropylene) (sPVdF‐co‐HFP) were prepared successfully. Fabricated blend membranes showed favorable PEM characteristics such as reduced methanol permeability, high selectivity, and improved mechanical integrity. Additionally, these membranes afford comparable proton conductivity, good oxidative stability, moderate ion exchange capacity, and reasonable water uptake. To appraise PEM performance, blend membranes were characterized using techniques such as Fourier transform infrared spectroscopy, AC impedance spectroscopy; atomic force microscopy, and thermogravimetry. Addition of hydrophobic PES confines the swelling of the PEM and increases the ultimate tensile strength of the membrane. Proton conductivities of the blend membranes are about 10?3 S cm?1. Methanol permeability of 1.22 × 10?7cm2 s?1 exhibited by the sPVdF‐co‐HFP/PES10 blend membrane is much lower than that of Nafion‐117. AFM studies divulged that the sPVdF‐co‐HFP/PES blend membranes have nodule like structure, which confirms the presence of hydrophilic domain. The observed results demonstrated that the sPVdF‐co‐HFP/PES blend membranes have promise for possible usage as a PEM in direct methanol fuel cells. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43907.  相似文献   

6.
A new membrane was synthesized containing pure alginate, crosslinking agent (CaCl2), and plasticizer (glycerol). Characterization studies of the membrane were applied to determine the characteristics and morphology using field emission scanning electron microscope, EDX, FTIR, XRD, and atomic force microscopy analysis. The half‐cell performance test of the membrane was verified by several tests, including proton conductivity and methanol permeability. The best membrane had high proton conductivity (10.1 × 10?3 S cm?1) and very low methanol permeability (1.984 × 10?7 cm2 s?1), which consequently resulted in very high selectivity (5.0907 × 104 Ss cm?3). Glycerol had a positive modification and good influence on the alginate characteristics. Furthermore, the poor mechanical properties of the alginate biopolymer were enhanced by calcium chloride and glycerol inside the polymer. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46666.  相似文献   

7.
A crosslinked epoxy [4,4′‐diglycidyl‐(3,3′,5,5′‐tetramethylbiphenyl) epoxy resin (TMBP)], cured by phenol novolac (PN), was introduced into a sulfonated poly(ether ether ketone) (SPEEK) membrane (ion‐exchange capacity = 2.0 mequiv/g) with a casting‐solution, evaporation, and heating crosslinking method to improve the mechanical properties, dimensional stability, water retention, and methanol resistance. By Fourier transform infrared analysis, the interactions between the sulfonic acid groups and hydroxyl groups in the blend membranes were confirmed. The microstructure and morphology of the blend membranes were investigated with atomic force microscopy. As expected, the blend membranes showed excellent mechanical properties, good thermal properties (thermal stability above 200°C), lower swelling ratios (1.4% at 25°C and 7.0% at 80°C), higher water retention (water diffusion coefficient = 9.8 × 10?6 cm2/s), and a lower methanol permeability coefficient (3.6 × 10?8 cm2/s) than the pristine SPEEK membrane. Although the proton conductivity of the blend membranes decreased, a higher selectivity (ratio of the proton conductivity to the methanol permeability) was obtained than that of the pristine SPEEK membrane. The results showed that the SPEEK/TMBP/PN blend membranes could have potential use as proton‐exchange membranes in direct methanol fuel cells. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
A series of crosslinked membranes based on new sulfonated polyphosphazene bearing pendent perfluorosulfonic acid groups (PMFP‐g‐PS) and sulfonated poly (ether ether ketone) were prepared and evaluated as proton exchange membranes for direct methanol fuel cells (DMFCs). The structure of PMFP‐g‐PS was characterized by Fourier transform infrared spectroscopy, 1H and 19F NMR spectra. In comparison with the pristine PMFP‐g‐PS membrane, the crosslinked membranes showed improved water uptakes and proton conductivities. The methanol permeability values of the membranes were in the range of 1.32 × 10?7 to 3.85 × 10?7 cm2/s, which were lower than Nafion 117 (12.1 × 10?7 cm2/s). The selectivity of all the membranes was much higher compared with Nafion 117. Furthermore, transmission electron microscopy observation revealed that clear phase‐separated structures were well dispersed and connected to each other in the membranes. These membranes displayed high water uptakes and low swelling ratios, high proton conductivities, low methanol permeability values, good thermal, and oxidative stabilities. The results indicate that these membranes are potential candidate proton exchange membrane materials for DMFCs. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43492.  相似文献   

9.
The vinyl addition type copolymer poly(butoxymethylene norbornene‐co‐biphenyl oxyhexamethyleneoxymethylene norbornene) (P(BN/BphN)) was synthesized by using bis‐(β‐ketonaphthylimino)nickel(II)/B(C6F5)3 catalytic system. P(BN/BphN) was sulfonated to give sulfonated P(BN/BphN) (SP(BN/BphN)) with concentrated sulfuric acid (98%) as sulfonating agent in a component solvent. The ion exchange capacity (IEC), degree of sulfonation (DS), water uptake, and methanol permeability of the SP(BN/BphN)s were increased with the sulfonated time. The methanol permeability of the SP(BN/BphN) membranes was in the range of 1.8 × 10?7 to 7.5 × 10?7 cm2/s, which were lower than the value 1.3 × 10?6 cm2/s of Nafion®115. The proton conductivity of SP(BN/BphN) membranes increased with the increase of IEC values, temperature, and water uptake. Water uptake of the SP(BN/BphN) membranes was lower than that of Nafion® 115 and leads to low proton conduction. Microscopic phase separation occurred in SP(BN/BphN) membrane and domains containing sulfonic acid groups were investigated by SEM and TEM. SP(BN/BphN) membranes had good mechanical properties, high thermal stability, and excellent oxidative stability. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
New composite proton exchange membrane was prepared by mixing a 1‐methyl‐2‐pyrrolidone (NMP) solution of sulfonated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SPPO) in sodium form and brominated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (BPPO) for hydrophilic‐hydrophobic balance, then casting the solution as a thin film, evaporating the solvent, and treating the membrane with aqueous hydrochloric acid. The resulting membranes were subsequently characterized using FTIR‐ATR, SEM‐EDXA, and TGA instrumentation as well as measurements of basic properties such as ion exchange capacity (IEC), water uptake, proton conductivity, methanol permeability, and single cell performance. Water uptake, IEC, proton conductivity, and methanol permeability all increased with a corresponding increase of SPPO content. By properly compromising the conductivity and methanol permeability, membranes with 60–80 wt % SPPO content exhibited comparable proton conductivity to that of Nafion® 117, with only half the methanol permeability, thereby demonstrating higher single cell performance. The membranes developed in this study could thus be a suitable candidate electrolyte for proton exchange membrane fuel cells (PEMFCs). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
The aim of this study was to find a suitable aniline derivative to develop composite sulfonated poly(ether ether ketone) (SPEEK) membranes and detail evaluation of their physico‐ and electrochemical properties. The hypothesis was high basicity of the aniline derivatives could form good composite membranes with better physicochemical and electrochemical properties. To assess the basicity we measured the zeta potentials of the polymers and correlated them with ion‐exchange capacities, water uptakes, transport numbers, water‐diffusion coefficients, conductivities, and methanol permeabilities. The obtained values of zeta potentials at pH 7 were 6.52, ?14.66, ?25.17, and ?28 for SPEEK/polynaphthalene (PNAPH), SPEEK/polyanisidine (PANIS), SPEEK/polyaniline (PANI), and SPEEK/polyxylindine (PXYL), respectively supports the hypothesis and strongly suggests polyaniline derivative's basicity‐dependent properties. Of the four derivatives (PNAPH, PANIS, PANI, and PXYL), the SPEEK/PXYL composite membrane had the lowest methanol permeability of 1 × 10?4 cm2/s and highest proton conductivity of 161 mS/cm. These values are far better than the neat SPEEK and SPEEK/PANI composite. The suitability of SPEEK/PXYL can be explained by the high basicity of the PXYL composite membrane, which leads to the formation of effective Debye spheres, meaning that the ionic complex can interact with surrounding hydronium ions and form hydrophilic channels resulting in high proton conductivity and low methanol permeability. These results suggest that SPEEK/PXYL is a highly suitable membrane for methanol fuel cells or other electrochemical applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43978.  相似文献   

12.
Novel sulfonated poly(2‐butoxymethylenenorbornene‐co‐2‐(6‐phenoxy‐hexyloxymethylene)‐5‐norbornene [sP(BN/PhHN)] were prepared successfully through vinyl‐addition type polymerization and then sulfonated with concentrated sulfuric acid (98%) as sulfonating agent in a component solvent. The sP(BN/PhHN)‐40 with the maximal degree of sulfonation of 40% can be obtained by controlling the sulfonating reaction time from 8 to 20 h, and a proton conductivity of 3.35 × 10?3 S/cm was achieved at 70°C. The methanol permeabilities of these membranes were in the range from 0.26 to 6.58 × 10?7 cm2/s, which were remarkably lower than Nafion (2.36 × 10?6 cm2/s). TEM analysis revealed that these side‐chain type membranes have a microphase separated structure composed of hydrophilic side‐chain domains and hydrophobic polynorbornene main chain domains. Sulfonated polynorbornene containing soft spacers displayed better properties, such as lower water uptake, high thermal properties, mechanical properties, and low methanol permeability. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
A polyphosphoric acid functionalized proton exchange membrane (PEM) was prepared by a ring opening reaction using the epoxycyclohexylethyltrimethoxysilane (EHTMS) and amino trimethylene phosphonic acid (ATMP) as raw materials and was modified by poly(vinylidene fluoride)–hexafluoro propylene (PVDF‐HFP). The structure of the membranes was characterized by Fourier transform infrared and scanning electron microscopy. The X‐ray photoelectron spectroscopy explores the content of the elements in the membrane related to the ion exchange capacity value. The membranes’ properties including water uptake, swelling ratio, proton conductivity, and hydrolysis stability were studied. Performance tests show that when ATMP/EHTMS = 1/5, conductivity of the PVDF‐HFP modified PEMs increased from 0.83 × 10?4 S cm?1 at 20 °C to 9.53 × 10?3 S cm?1 at 160 °C, the swelling ratio of membranes decreased from 2.71% to 2.13%. The results indicate that the introduction of F atoms is beneficial to increase the proton conductivity and the dimensional stability. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46737.  相似文献   

14.
Polyimides (PIs) as high‐performance organic matrices are used in the preparation of PI composites because of their excellent mechanical, thermal and dielectric properties. The sol–gel method is a promising technique for preparing these PI composites due to the mild reaction conditions and the process being controllable. Although sulfonated polyimide (SPI) proton‐exchange membranes have attracted much attention recently, studies on preparing SPI‐based hybrid proton‐exchange membranes for fuel cells have been rare. A series of SPI? SiO2 hybrid proton‐exchange membranes were prepared from amino‐terminated SPI pre‐polymers, 3‐glycidoxypropyltrimethoxysilane (KH‐560) and tetraethylorthosilicate through a co‐hydrolysis and condensation process using an in situ sol–gel method. The reactive silane KH‐560 was used to react with amino‐terminated SPI to form silane‐capped SPI in order to improve the compatibility between the polymer matrix and the inorganic SiO2 phase. The microstructure and mechanical, thermal and proton conduction properties were studied in detail. The hybrid membranes were highly uniform without phase separation up to 30 wt% SiO2. The storage modulus and tensile strength of the hybrid membranes increased with increasing SiO2 content. The introduction of SiO2 improved the methanol resistance while retaining good proton conductivity. The hybrid membrane with 30 wt% SiO2 exhibited a proton conductivity of 10.57 mS cm?1 at 80 °C and methanol permeability of 2.3 × 10?6 cm2 s?1 possibly because the crosslinking structure and SiO2 phases formed in the hybrids could retain water and were helpful to proton transport. Copyright © 2010 Society of Chemical Industry  相似文献   

15.
A series of acid–base polyimides with sulfonic acid groups in the side chains have been prepared, based on a new synthesized sulfonated diamine monomer containing pyridine functional group. The effect of the introduction of pyridine groups into copolymer backbone on the properties of membrane were evaluated through the investigation of membrane parameters. The copolymers produced flexible, tough, and transparent membranes by solvent casting method. All the prepared membranes displayed high thermal stability, great oxidative stability and good mechanical properties. They exhibited appropriate water uptake (15.8–30.2 wt % at 80°C) and remarkable dimensional stability (2.5–6.9% at 80°C). The proton conductivity of SPI‐80 was 1.01 × 10?2 S cm?1 at room temperature. Moreover, the methanol permeability of SPI‐80 membrane was 1.22 × 10?7 cm2 s?1, which was lower than 23.8 × 10?7 cm2 s?1 of Nafion 117. Therefore, these acid‐base polyimides materials have a promising prospect for direct methanol fuel cell applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42238.  相似文献   

16.
New type of composite membranes were synthesized by crosslinking of poly(vinyl alcohol) (PVA) with sulfosuccinic acid (SSA) and intercalating poly(1‐vinyl‐1,2,4‐triazole) (PVTri) into the resulting matrix. The complexed structure of the membranes was confirmed by Fourier transform infrared (FTIR) spectroscopy. The resulting hybrid membranes were transparent, flexible, and showed good thermal stability up to ~200°C. The proton conductivities of the membranes were investigated as a function of PVTri and SSA and operating temperature. The water/methanol uptake was measured and the results showed that solvent absorption of the materials increased with increasing PVTri content in the matrix. The proton conductivity of the membranes continuously increased with increasing SO3H content, PVTri content, and the temperature. In the anhydrous state, the maximum proton conductivity is 7.7 × 10?5 S/cm for PVA–SSA–PVTri‐1 and for PVA–SSA–PVTri‐3 is 1.6 × 10?5 S/cm at 150°C. After humidification (RH = 100%), PVA–SSA–PVTri‐4 showed a maximum proton conductivity of 0.0028 S/cm at 60°C. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

17.
A series of novel sulfonated polyimide (SPI)/crosslinked poly(N‐isopropylacrylamide) (cPNIPAm) semi‐interpenetrating polymer networks (semi‐IPNs) were synthesized as the proton exchange membranes for direct methanol fuel cells via in situ polymerization. The micromorphology and properties of the semi‐IPN membranes were characterized. The results indicated that the hydrogen bonds between cPNIPAm and SPI in the semi‐IPN structure were a crucial factor for regulating the micromorphology, proton conductivity and other properties of the semi‐IPN membranes. A more uniform sulfonic ionic cluster distribution was observed in the membrane of SPI‐20‐cPNIPAm with equimolar ratio of sulfonic acid groups and amido bonds, which could provide effective proton transport channels. The SPI‐20‐cPNIPAm exhibited a maximum proton conductivity of 0.331 S cm?1 at 80 oC (relative humidity 100%), an optimal selectivity of 8.01 × 105 S s cm?3 and an improved fuel cell performance of 72 mW cm?2 compared with both pristine SPI and other semi‐IPN membranes. The SPI‐20‐cPNIPAm semi‐IPN membranes also retained good mechanical properties and thermal stabilities on the whole. © 2014 Society of Chemical Industry  相似文献   

18.
In order to find a low cost polymer electrolyte membrane with low methanol cross-over, the development of novel polymer electrolytes have been actively carried out in recent time as alternatives to Nafion®, which is the state-of-the art membrane. The problems associated with these alternative membranes are higher permeability to the fuel, lower proton attraction and thermal stability. This work therefore was focused on synthesizing low methanol permeable membrane with good proton conductvity and thermal stability from locally available polymer (Polystyrene-butadiene rubber). Results obtained revealed that the synthesized membrane exhibited methanol permeation in the ranges of 2.13 × 10?7 to 7.58 × 10?7 mol/cm2s which was lower than that of Nafion® (3.15 × 10?6 cm2/s). The proton conductivity of the synthesized membrane is in the order of 10?2 S/cm. The results also show that water and solvent uptake of the synthesized membrane are moderate as compared to that of Nafion®. These results are influenced by the degree of sulphonation and membrane thickness ranging from 0.112 mm?0.420 mm.  相似文献   

19.
The preparation of sulfonated polybenzimidazole (sPBI) by the grafting of (4‐bromomethyl) benzenesulfonate onto polybenzimidazole (PBI) has been investigated. The methanol permeability and proton conductivity of PBI and sPBI have been studied, and the effects of methanol concentration and temperature on the methanol permeability of PBI and sPBI membranes are discussed. The results showed that the PBI membrane is a good methanol barrier. Methanol permeability in this membrane decreases with increasing methanol concentration and increases with increasing temperature. The temperature‐dependence of methanol permeability of PBI and sPBI membranes is of the ‘Arrhenius type’. Methanol permeation of sPBI is less sensitive to temperature than that of PBI. However, sPBI is a poorer methanol barrier when compared to PBI. Methanol permeability in sPBI membranes increases with increasing methanol concentration and temperature. The proton conductivity of sPBI is 4.69 × 10?4 S cm?1 at room temperature in the hydrated state. The DC conductivity of sPBI–H3PO4 increases with increasing temperature. Proton transport in sPBI–H3PO4 is less sensitive to temperature than that in PBI–H3PO4. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
This work concerns preparation of acid‐base polyelectrolyte membranes for fuel‐cell applications from cellulosic backbones for the first time. Grafted cellophane‐phosphoric acid‐doped membranes for direct oxidation methanol fuel cells (DMFC) were prepared following three steps. The first two steps were conducted to have the basic polymers. The first step was introducing of epoxy groups to its chemical structure through grafting process with poly(glycidylmethacrylate) (PGMA). The second step was converting the introduced epoxy groups to imides groups followed by phosphoric acid (? PO3H) doping as the last step. This step significantly contributes to induce ion exchange capacity (IEC) and ionic conductivity (IC). Chemical changes of the cellophane composition and morphology characters were followed using FTIR, TGA, and SEM analysis. Different factors affecting the membranes characters especially IEC, methanol permeability, and thermal stability were investigated and optimized to have the best preparation conditions. Compared to Nafion 117 membrane, cellophane‐modified membranes show a better IEC, less methanol permeability, and better mechanical and thermal stability. IEC in the range of 1–2.3 meq/g compared to 0.9 meq/g per Nafion was obtained, and methanol permeability has been reduced by one‐order magnitude. However, the maximum obtained IC for cellophane‐PGMA‐grafted membrane doped with phosphoric acid was found 2.33 × 10?3 (S cm?1) compared to 3.88 × 10?2 (S cm?1) for Nafion 117. The obtained results are very promising for conducting further investigations taking into consideration the very low price of cellophane compared to Nafion. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号