首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This work reports the study of the addition of isopropanol on controlled release of ibuprofen from ethylene vinyl acetate (EVAc) copolymer membranes. An EVAc solution in cyclohexane (4% w/v) containing triethyl citrate (7% w/v) as plasticizer was mixed with ibuprofen at three different concentrations of 4, 6, and 8%. Isopropanol was mixed with each of the previous mixtures to form solutions of 1, 3, and 5% isopropanol concentrations. Samples were solvent cast on glass petri‐dishes to form membranes. Home‐made diffusion cells were used for in vitro study. These cells were composed of two compartments, donor (exposed to ambient conditions), and receptor (including buffer solution maintained at 37°C). Each cell was equipped with a sampling port and water in and out system. An ultraviolet spectrometer at 222 nm was used to measure release rates of obtained membranes. The diffusion mechanism for drug release was examined by zero‐order, first‐order, Higuchi and Korsmeyer‐Peppas theories to confirm the obtained membranes follow the matrix‐type system. By increasing the drug concentration from 4 to 8%, drug release (cumulative amount) was improved from 20 (47.5%) to 30 (36%) μg/cm2 after 24 h. Addition of 5% isopropanol to the above samples (4 and 8% loading) further increased drug release to 24 and 43 μg/cm2. Results were in good agreement with the Korsmeyer‐Peppas theory for samples with 4 (% w/w) of ibuprofen. The highest percentage of drug release after 24 h was 59% for the sample with 4% drug loading compared to 50% for the sample with 8% drug loading, both with 5% isopropanol. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Polymeric membrane-based gas separation has found wide applications in industry, such as carbon capture, hydrogen recovery, natural gas sweetening, as well as oxygen enrichment. Commercial gas separation membranes are required to have high gas permeability and selectivity, while being cost-effective to process. Mixed matrix membranes (MMMs) have a composite structure that consists of polymers and fillers, therefore featuring the advantages of both materials. Much effort has been made to improve the gas separation performance of MMMs as well as general membrane properties, such as mechanical strength and thermal stability. This perspective describes potential use of MMMs for carbon capture applications, explores their limitations in fabrication and methods to overcome them, and addresses their performance under industry gas conditions.  相似文献   

3.
CO2-selective Pebax/NaY mixed matrix membranes (MMMs) were prepared by incorporating NaY zeolite into Pebax matrix. The morphology, chemical groups, thermal stability, and microstructure of the MMMs were investigated by scanning electron microscope, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction, respectively. The effects of zeolite loading amount, permeation temperature and pressure on the CO2/N2 separation performance of the resultant membranes were studied. The as-prepared MMMs are much superior to the pristine Pebax membranes in terms of permeability and selectivity. The CO2 permeability and CO2/N2 selectivity can respectively reach to 131.8 Barrer and 130.8 for MMMs made by the starting materials containing 40 wt % NaY. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48398.  相似文献   

4.
5.
The membrane processes play a significant role in the water and wastewater treatment to remove dissolved solids, especially electrolytes. In this study, the asymmetric mixed matrix membranes based on polyurethane and SAPO-5 zeolite were used on electrolyte (NaCl) removal from water. Using a low operating pressure, the membrane performances (i.e., pure water permeation, flux and salt rejection) were measured. All membranes were showing an increase in water flux when the pressure was increased. This situation shows that the produced membranes were stable in producing flux and were suitable to be used to proceed for membrane testing process. Based on the results obtained, rejection of salt water increased as the pressure given increased for each membrane. The mixed matrix membranes showed the high rejection for the salt water (NaCl 0.02 M). This shows the good performance in both flux and rejection, and even achieves 98% rejection for the NaCl 0.02 M. Based on the experimental results, it is believed that these mixed matrix membranes are suitable for the electrolytes removal applications.  相似文献   

6.
采用壳层具有介孔结构的聚吡咯中空纳米微球作为填料,和聚氧化乙烯单体共混自由基聚合制备了混合基质膜。结果表明,聚吡咯微球与基质相容性较好,未见明显团聚现象和缺陷。混合基质膜的渗透系数随填料含量的增加先增大后减少,在0.5%处达到最大值,CO2渗透系数增长31%;CO2/N2分离系数有所降低,CO2/CH4分离系数则变化不大。研究表明,由于聚合物链段对微球壳层的介孔填充,气体在膜内的扩散系数不升反降,渗透系数的提高主要是由于溶解度系数的变化,而这也导致了溶解选择性的变化,进而影响了分离系数。  相似文献   

7.
The hollow polypyrrole nanoparticle with porous shell was incorporated into poly(ethylene oxide) monomer to fabricate the mixed matrix membrane by free radical polymerization. Morphology of the membranes showed the polymeric filler had good interfacial compatibility with the polymeric matrix without obvious defect. The results showed that the gas permeability of membranes increased at first and then decreased as the filler loading increased, while the permselectivity of CO2/N2 decreasedandthat of CO2/CH4 maintained constant basically. The research showed that the diffusion coefficients decreased due to the blockage of the pore in shell of nanoparticles by polymeric matrix, the improvement of the gas permeability was mainly contributed by the improvement of the solubility coefficient, which also affected the solubility selectivity and then the permselectivity. The optimum nanoparticle loading was around 0.5%. In this case, the permeability of CO2 was about 6.5×10-11 cm3?cm?cm-2?s-1?Pa-1 (31% higher than the pristine polymeric membranes), while the permselectivity of CO2/N2 was about 30 (34% lower than that of the pristine polymeric membranes) and the permselectivity of CO2/CH4 was about 14 without significant sacrifice. The result showed the polypyrrole nanoparticles with porous shell was potential for application in CO2/CH4 separation.  相似文献   

8.
Mixed matrix membranes (MMMs) based on metal–organic framework (MOF) have great promising application in separation of gas mixtures. However, achieving a good interfacial compatibility between polymer and MOF is not straightforward. In this work, focusing on one of the most challenging olefin/paraffin separations: propylene/propane (C3H6/C3H8), we demonstrate that modification of the MOF filler via dopamine polymerization using a double solvent approach strongly improves interfacial compatibility. The resulting membranes show an outstanding separation performance and long-term stability with propylene permeability nearly 90 Barrer and propylene/propane selectivity close to 75. We anticipate that similar MOF modification strategies may help solve the problem of interface defects in the manufacture of MMMs and be extended to other porous fillers.  相似文献   

9.
混合基质膜(MMMs)在气体分离领域具有良好的应用前景,金属有机框架(MOFs)由于具有高孔隙率和有机连接基团,常被用作填料制备MMMs。但由于MOFs与聚合物的界面相容性问题,MMMs的气体分离性能提升受到限制。本文合成了功能化的Zr-MOF(UiO-66-AC),并利用其与聚醚共聚酰胺(Pebax)共同制备了混合基质膜。填料中引入的羰基和羧基等基团提供了MOFs与聚合物基质之间较强的界面相互作用。与纯Pebax膜相比,UiO-66-AC/Pebax MMMs的气体渗透性能得到了显著提高。当填料质量分数为6%时,膜的CO2渗透系数为102.4 Barrer,CO2/N2和CO2/CH4选择性分别为90.6和26.0,CO2/N2分离性能突破了Robeson上限(2008),表明该混合基质膜在CO2的分离应用上具有潜力。  相似文献   

10.
Mixed matrix membranes (MMMs) were prepared by solvent evaporation method using Pebax-1074 polymer as matrix and inorganic zeolite SAPO-23 as dopant. The morphology, surface functional groups, microstructure, thermal stability, and separation performance of MMMs were analyzed by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and gas permeation, respectively. The effects of dopant loading amount, permeation temperature, and permeation pressure on the structure and properties of MMMs were investigated. The results showed that the introduction of SAPO zeolite reduced the crystallinity of the MMMs and improved the CO2/N2 selectivity. Under the conditions of 30°C and 0.15 MPa, the MMMs prepared by incorporating with 5% SAPO zeolite in content exhibited the highest CO2/N2 selectivity of 72.0 together with the CO2 permeability of 98.2 Barrer.  相似文献   

11.
12.
Mixed matrix membranes (MMMs), which combine the good separation performance of inorganic materials with the low cost of polymers, have emerged as a research hotspot for gas separation membranes. Zeolite imidazolate frameworks (ZIFs) are widely used as fillers to prepare MMMs owing to their advantageous characteristics, such as adjustable pore channels, unsaturated sites, and easy functionalization. For MMMs, three directions can be employed as criteria for improvement compared with pristine polymeric membranes. In this article, the progress of ZIF-based MMMs is reviewed from the aspects of sole-ZIF-based MMMs and modified ZIF-based MMMs. Both strategies improve the separation performance through different improvement directions and mechanisms. Our analysis shows that the synergistic effect of the modified filler can change the structure of the membranes, such as by improving the filler–polymer interface voids, which provides a foundation to overcome the trade-off effect to a certain extent. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48968.  相似文献   

13.
毛恒  王月  王森  刘伟民  吕静  陈甫雪  赵之平 《化工学报》2022,73(3):1389-1402
渗透汽化(PV)膜分离是一种高效节能、无污染的化工分离技术,在有机废水处理领域的应用潜力巨大。以3-氨丙基三乙氧基硅烷(APTES)改性二维ZIF-L(AZLs),将其引入聚醚嵌段酰胺(PEBA)内制备AZLs/PEBA混合基质膜,用于分离水溶液中的苯酚。系统表征了所制膜的微结构与物化特性,考察了APTES添加量、AZLs填充量、操作温度、料液浓度等对膜分离性能的影响。结果表明:AZLs均匀分散在PEBA基质中,表明两者具有良好的界面相容性。AZLs的加入使得膜疏水性增强而表面自由能降低,从而提高了PEBA膜的选择性。当分离80℃、1000 mg/kg苯酚水溶液时,AZLs/PEBA膜总通量可达2046 g/(m2·h),分离因子为25.4,并且具有一定的稳定性。所制AZLs/PEBA混合基质膜在含酚废水处理方面具有应用前景。  相似文献   

14.
靳卓  王永洪  张新儒  白雪  李晋平 《化工学报》2022,73(10):4527-4538
为了获得高性能的CO2/N2分离膜,把空气中氧刻蚀的二硫化钼(a-MoS2)和金属有机框架材料MIP-202通过机械力化学反应制备的双功能填料作为分散相,聚醚嵌段酰胺(Pebax-1657)作为连续相,采用溶液浇铸法制备了Pebax/a-MoS2/MIP-202混合基质膜。采用FT-IR表征了填料的化学结构,借助ATR-FTIR、SEM、TG和力学性能测试表征了混合基质膜的化学结构、微观形貌结构、热稳定性和物理力学性能。研究了水含量、双功能填料配比、含量、膜两侧压差和操作温度对膜气体分离性能的影响,并考察了模拟烟道气(CO2/N2体积比15/85)条件下混合基质膜的长时间运行稳定性。结果表明:在温度为25℃、膜两侧压差为0.1 MPa的操作条件下,a-MoS2与MIP-202质量比为5∶5和双功能填料含量为6%(质量)时,膜的气体分离性能达到最优,CO2渗透性和CO2/N2选择性分别为380 Barrer和124.7,超过了2019年McKeown等提出的上限值。连续测试360 h后,混合基质膜的性能没有明显降低,其平均CO2渗透性和CO2/N2选择性分别为358 Barrer和120.1。这主要是由于a-MoS2和MIP-202协同提高了膜的气体分离性能。  相似文献   

15.
靳卓  王永洪  张新儒  白雪  李晋平 《化工学报》1951,73(10):4527-4538
为了获得高性能的CO2/N2分离膜,把空气中氧刻蚀的二硫化钼(a-MoS2)和金属有机框架材料MIP-202通过机械力化学反应制备的双功能填料作为分散相,聚醚嵌段酰胺(Pebax-1657)作为连续相,采用溶液浇铸法制备了Pebax/a-MoS2/MIP-202混合基质膜。采用FT-IR表征了填料的化学结构,借助ATR-FTIR、SEM、TG和力学性能测试表征了混合基质膜的化学结构、微观形貌结构、热稳定性和物理力学性能。研究了水含量、双功能填料配比、含量、膜两侧压差和操作温度对膜气体分离性能的影响,并考察了模拟烟道气(CO2/N2体积比15/85)条件下混合基质膜的长时间运行稳定性。结果表明:在温度为25℃、膜两侧压差为0.1 MPa的操作条件下,a-MoS2与MIP-202质量比为5∶5和双功能填料含量为6%(质量)时,膜的气体分离性能达到最优,CO2渗透性和CO2/N2选择性分别为380 Barrer和124.7,超过了2019年McKeown等提出的上限值。连续测试360 h后,混合基质膜的性能没有明显降低,其平均CO2渗透性和CO2/N2选择性分别为358 Barrer和120.1。这主要是由于a-MoS2和MIP-202协同提高了膜的气体分离性能。  相似文献   

16.
17.
The polymer–zeolite mixed matrix membranes were fabricated by incorporating nanosized or microsized zeolite 4A into polyethersulfone. A comparison of zeolite 4A nanocrystals and microcrystals was made by using SEM, XRD, N2 adsorption–desorption measurements. Zeolite particles were well‐distributed in the polymer phase, as reflected by the SEM images. The effects of the zeolite 4A particle size on the gas permeation performance were studied. Experimental results demonstrate that mixed matrix membranes exhibit decreased gas permeabilities due to the barrier effect of zeolite particles. The obtained permselectivity is greatly enhanced for He/N2, H2/N2, He/CO2, and H2/CO2 gas pairs, especially for nanosized zeolite 4A mixed matrix membranes. The gas permeation performance difference is observed between the nanostructured and microstructured membranes, which is attributed to a combined effect of different zeolite composition and different particle size. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3800–3805, 2006  相似文献   

18.
时飞  李奕帆 《化工进展》2020,39(6):2453-2462
膜分离技术因其低成本、低能耗及高效率的优势被认为是最具有前景的碳捕集技术之一。混合基质膜结合了有机材料与无机材料两方面的优势,是同时提升渗透性和选择性的有效手段。本文从气体在混合基质膜中的传递机制出发,以常见的无孔型与多孔型无机填料为基础,总结了近年来混合基质膜在二氧化碳捕集领域的研究进展,介绍了不同类型的填料在高分子基质中所起到的微结构调节作用,并着重阐述了在混合基质膜制备过程中无机填料与高分子基质之间所存在的相容性问题及其解决方法。最后,提出混合基质膜应在继续致力于填料结构设计、填料分散、构效关系等方面的同时,加强二维填料、微囊填料和促进传递机制等方面的研究。  相似文献   

19.
聚合物乳液包膜控释肥料技术研究进展   总被引:2,自引:0,他引:2  
综述了包膜控释肥料聚合物乳液包膜剂的研究现状和基本特性,分析了流化床和转鼓流化床包膜过程中的主要影响因素,对目前聚合物乳液包膜控释肥料的释放性能进行了评述,分析了乳液包膜控释肥料研发中的关键问题,并对其发展前景进行了展望。  相似文献   

20.
BACKGROUND: Low energy and less expensive membrane based separation of acetic acid‐water mixtures would be a better alternative to conventional separation processes. However, suitable acid resistant membranes are still lacking. Thus, the objective of the present study was to develop mixed matrix membrane (MMM) which would allow high flux and water selectivity over a wide range of feed concentrations of acid in water. RESULTS: Three MMMs, namely PANBA0.5, PANBA1.5 and PANBA3 were made by emulsion copolymerization of acrylonitrile (AN) and butyl acrylate (BA) with 5.5:1 comonomer ratio and in situ incorporation of 0.5, 1.5 and 3 wt%, sodium montmorilonite (Na‐MMT) nanofillers, respectively. For a feed concentration of 99.5 wt% of acid in water the membranes show good permeation flux (2.61, 3.19, 3.97 kg m?2 h?1 µm?1, for PANBA0.5, PANBA1.5 and PANBA3 membrane, respectively) and very high separation factors for water (1473, 1370, 1292 for PANBA0.5, PANBA1.5 and PANBA3 membrane, respectively) at 30 °C. Similarly for a dilute acid–water solution, i.e. for 71.6 wt% acid the membrane showed a very high thickness normalize flux (8.67, 9.44, 11.56 kg m?2 h?1 µm?1, for PANBA0.5, PANBA1.5 and PANBA3 membrane, respectively) and good water selectivity (101.7, 95.3, 79 for PANBA0.5, PANBA1.5 and PANBA3 membrane, respectively) at the same feed temperature. The permeation ratio, permeability, diffusion coefficient and activation energy for permeation of the membranes were also estimated. CONCLUSION: Unlike most of the reported membranes, the present MMMs allowed high flux and selectivity over a wide range of feed concentrations. These membranes may also be effective for separating other similar organic‐water mixtures. Copyright © 2012 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号