首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of two polysaccharide‐based graft copolymers with acrylamide, guar gum grafted polyacrylamide (GG‐g‐PAM) and hydroxypropyl guar gum grafted polyacrylamide (HPG‐g‐PAM) is described. The graft copolymers have been characterized by viscometry, infrared spectroscopy and thermal analysis. The flocculation characteristics of the graft copolymers have been studied in kaolin, iron ore, and silica suspensions. For the base polysaccharides guar gum (GG) and hydroxypropyl guar gum (HPG), it is observed that GG exhibits better performance than HPG in all three suspensions. For the graft copolymers, HPG‐g‐PAM shows better performance than GG‐g‐PAM. The flocculation characteristics of the best performing graft copolymer (HPG‐g‐PAM) are compared with various commercially available flocculants in the three suspensions mentioned above. © 2001 Society of Chemical Industry  相似文献   

2.
Graft copolymers of poly(vinyl alcohol) and polyacrylamide (PVA‐g‐PAM) were synthesized using a ceric ion–induced solution polymerization technique at 28°C. Three grades of graft copolymers were synthesized with varying acrylamide concentrations. Three grades of hydrolyzed products of PVA‐g‐PAM were synthesized with varying concentrations of sodium hydroxide solution. Hydrolyzed and unhydrolyzed PVA‐g‐PAM were characterized by viscometry, X‐ray diffractometry, infrared spectroscopy, and thermal analysis. Rheological investigation was also carried out on the aqueous solutions of various samples. The flocculation characteristics of various materials were investigated by the use of jar and settling tests in 0.25 and 5 wt %, respectively, using kaolin and iron ore suspensions. Among the series of graft copolymers, the one with fewest but longest PAM chains showed superior performance. The flocculation characteristics of the best‐performing graft copolymer were compared with those of various commercially available flocculants in the two suspensions under investigation. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2109–2122, 2006  相似文献   

3.
Poly(N‐isopropylacrylamide‐co‐hydroxyethyl methacrylate) [P(NIPAM‐co‐HEMA)] copolymer was synthesized by controlled radical polymerization from respective N‐isopropylacrylamide (NIPAM) and hydroxyethyl methacrylate (HEMA) monomers with a predetermined ratio. To prepare the thermosensitive and biodegradable nanoparticles, new thermosensitive graft copolymer, poly(L ‐lactide)‐graft‐poly(N‐isoporylacrylamide‐co‐hydroxyethyl methacrylate) [PLLA‐g‐P(NIPAM‐co‐HEMA)], with the lower critical solution temperature (LCST) near the normal body temperature, was synthesized by ring opening polymerization of L ‐lactide in the presence of P(NIPAM‐co‐HEMA). The amphiphilic property of the graft copolymers was formed by the grafting of the PLLA hydrophobic chains onto the PNIPAM based hydrophilic backbone. Therefore, the graft copolymers can self‐assemble into uniformly spherical micelles ò about 150–240 nm in diameter as observed by the field emission scanning electron microscope and dynamic light scattering. Dexamethasone can be loaded into these nanostructures during dialysis with a relative high loading capacity and its in vitro release depends on temperature. Above the LCST, most of the drugs were released from the drug‐loaded micelles, whereas a large amount of drugs still remains in the micelles after 48 h below the LCST. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
Block copolymers of very hydrophilic poly(N‐hydroxyethyl acrylamide) (PHEAA) with polystyrene (PS) were successfully synthesized by sequential atom transfer radical polymerization of ethyl acrylate (EA) and styrene monomers and subsequent aminolysis of the acrylic block with ethanolamine. Quantitative aminolysis of poly(ethyl acrylate) (PEA) block yielded poly(N‐hydroxyethyl acrylamide)‐b‐polystyrene in well‐defined structures, as evidenced by Fourier transform infrared spectroscopy (FTIR) and 1H‐NMR spectroscopy techniques. Three copolymers with constant chain length of PHEAA (degree of polymerization: 80) and PS blocks with 21, 74, and 121 repeating units were prepared by this method. Among those, the block copolymer with 21 styrene repeating units showed excellent micellation behavior in water without phase inversion below 100°C, as inferred from dynamical light scattering, environmental scanning electron microscopy, and fluorescence measurements. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
A novel synthetic route for preparing polypropylene‐graft‐polystyrene (PP‐g‐PSt) was set up. With this synthetic route, a series of PP‐g‐PSt copolymers containing different percentages of polystyrene chain were synthesized, based on the different reactivities of two kinds of C? C double bonds on 4‐(3‐butenyl) styrene. Characterization data, including 1H‐NMR, 13C‐NMR, GPC, and DSC, demonstrated that the graft copolymers were all very pure. Furthermore, it was also attempted to use this new kind of propylene–styrene graft copolymer as a compatibilizer. DMA and SEM results illustrated that the PP‐g‐PSt obtained is an efficient compatibilizer for the polypropylene–polystyrene blend. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 314–322, 2004  相似文献   

6.
Sodium alginate-g-polyacrylamide (SAG) was synthesized by ceric ion induced redox polymerization technique. Six grades of graft copolymers were prepared by varying as well as monomer concentrations. The graft copolymers were characterized by intrinsic viscosity measurements, IR, and 13C-NMR spectroscopies. Of the above grades, the graft copolymer of grade six (SAG-VI), which has longer polyacrylamide chains, was used for flocculation study. Two coking and noncoking coal fine suspensions were selected for the flocculation study. The flocculation performance of the graft copolymer was compared with commercial flocculants. In all cases, it was found that the graft copolymer showed better performance than the commercial flocculants. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 375–382, 2001  相似文献   

7.
A hydrated, 1% by weight Na‐kaolinite suspension in deionized water was prepared, completely characterized, and reproducible measures of flocculation efficiency were validated. Flocculation tests of copolymers of acrylamide (AM) with dimethylacrylamide (DMA), methacrylamide (MeAM), or N‐t‐butylacrylamide (NTBAM) with 1% Na‐kaolinite suspensions gave average settling rate rates which decreased as the proportion of DMA, MeAM, or NTBAM in the copolymer increased. However, for a similar weight‐average molecular weight and slightly lower 〈rg〉, the copolymer from DMA‐co‐AM‐3 gave settling rates and supernatant turbidities comparable to similar types of commercial polymers. This new copolymer was also more resistant to changes in pH or the presence of an electrolyte than were the tested commercial polymers. Cationic derivatives of the new copolymers gave lower average settling rates and higher supernatant turbidities than those of Percol 721 (cationic PAM), probably because of their lower charge densities. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2090–2108, 2002; DOI 10.1002/app.10562  相似文献   

8.
In this study, 2‐hydroxyethyl methacrylate and N‐isopropyl acrylamide was block grafted onto the polypropylene macroporous membrane surface by photo‐induced reversible addition‐fragmentation chain transfer (RAFT) radical polymerization with benzyl dithiobenzoate as the RAFT agent. The degree of grafting of poly(2‐hydroxyethyl methacrylate) on the membrane surface increased with UV irradiation time and decreased with the chain transfer agent concentration increasing. The poly(2‐hydroxyethyl methacrylate)‐ grafted membranes were used as macro chain transfer agent for the further block graft copolymerization of N‐isopropyl acrylamide in the presence of free radical initiator. The degree of grafting of poly(N‐isopropyl acrylamide) increased with reaction time. Furthermore, the poly(2‐hydroxyethyl methacrylate)‐ grafted membrane with a degree of grafting of 0.48% (wt) showed the highest relative pure water flux and the best antifouling characteristics of protein dispersion. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
BACKGROUND: Amphiphilic block and graft copolymers constitute a very interesting class of polymers with potential for biomedical applications, due to their special characteristics, which derive from the combination of properties of hydrophilic and hydrophobic moieties. In this work, the synthesis and biodegradation of poly(2‐hydroxyethyl methacrylate)‐graft‐poly(L ‐lactide) are studied. RESULTS: The graft copolymers were synthesized using the macromonomer technique. In a first step, methacryloyl‐terminated poly(L ‐lactide) macromonomers were synthesized in a wide molecular weight range using different catalysts. Subsequently, these macromonomers were copolymerized with 2‐hydroxyethyl methacrylate in order to obtain a graft copolymer. These new materials resemble hydrogel scaffolds with a biodegradable component. The biodegradation was studied in hydrolytic and enzymatic environments. The influence of different parameters (molecular weight, crystallinity, ratio between hydrophilic and hydrophobic components) on the degradation rate was investigated. CONCLUSION: Based on this study it will be possible to tailor the release properties of biodegradable materials. In addition, the materials will show good biocompatibility due to the hydrophilic poly(2‐hydroxyethyl methacrylate) hydrogel scaffold. This kind of material has potential for many applications, like controlled drug‐delivery systems or biodegradable implants. Copyright © 2008 Society of Chemical Industry  相似文献   

10.
The influence of the total comonomer concentration (TCC; 30–42 wt %), emulsifier concentration (EC; 7.3–23 wt %), hydrophilic–lipophilic balance (HLB; 9–9.9), crosslinking agent (N,N′‐methylene bisacrylamide) concentration (CAC; 0–122.8 ppm with respect to TCC), and isopropyl alcohol (chain‐transfer agent) concentration (IPC; 0–1.5 wt % with respect to TCC) on the flocculation performance (FP) of 80/20 wt % acrylamide (AM)/[2‐(acryloyloxy)ethyl]trimethylammonium chloride (ADQUAT) copolymers obtained by semicontinuous inverse microemulsion copolymerization was studied with capillary suction time testing for FP assessment on anaerobic digested sludges. FP increased as TCC decreased, was nearly unaffected by EC, was maximum with an HLB of 9.5, decreased strongly with CAC, and showed a peak value with an IPC of 1 wt %. At a very high TCC, copolymer growth in a highly collapsed state resulted in greatly structured, high weight‐average molar mass flocculants with decreased swelling capacities (SCs), which did not favor bridging flocculation, and in increased shielding of their positive charges, which did not favor charge neutralization flocculation. However, industrially needed latices with both high TCC and good FP could be obtained by the addition of isopropyl alcohol, which, below a concentration of 1 wt %, improved FP by decreasing the weight‐average molar mass and thereby enhancing SC while maintaining long enough chains to be effective for bridging flocculation. On the basis of the results, new star‐shaped ADQUAT/AM copolymers are envisioned as flocculants with superior FP. A synthetic route is proposed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
The synthesis of glycogen‐g‐polyacrylamide (Gly‐g‐PAM) was carried out by a ceric ion‐induced solution polymerization technique. Six grades of graft copolymers were synthesized by the variation of catalyst and monomer concentrations. These graft copolymers were characterized by intrinsic viscosity measurements, FTIR spectroscopy, and X‐ray diffraction techniques. Flocculation performance of these graft copolymers were done in kaolin suspension. Of the above grades, the graft copolymer Gly‐g‐PAM 5, which has longer PAM chains, showed best flocculation performance. The flocculation performance of the graft copolymer was compared with commercial flocculants and other PAM‐grafted flocculants developed so far in the authors' laboratory. In all the cases, it was found that the graft copolymer performed the best. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 773–778, 2007  相似文献   

12.
Graft copolymers of potato starch with acrylamide, acrylamide, and acrylic acid or N‐vinylformamide in the presence of 1–16 wt % montmorillonite were manufactured via reactive extrusion. XRD and TEM measurements exhibited intercalated structure of clay dispersion (d001 distance up to 2.3 nm). The influence of graft polymer(s) system and montmorillonite content on thermal properties, water sorption as well as polyvalent metal cation (Cd2+ and Fe3+) sorption of obtained starch graft copolymers has been determined. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
A series of novel copolymer superabsorbents based on monomer acrylamide (AM), potassium methacrylate (KMA), and 2‐hydroxyethyl methacrylate (HEMA) were prepared by copolymerization using ammonium persulfate (APS) as an initiator and N,N‐methylenebisacrylamide (MBA) as a crosslinking agent. The synthetic variables (the monomer concentration, crosslinker concentration, and initiator concentration) were also studied. The experimental results of superabsorbent polymers (SAPs) show a better absorbency in both water and NaCl solutions. The copolymers were characterized by IR spectroscopy. The water retention in the soil was enhanced using the above superabsorbents. The use of SAPs for the growth of groundnut plants was also investigated. SAPs can be considered for water‐managing materials for agriculture and horticulture purposes in desert and drought‐prone areas. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1795–1801, 2002  相似文献   

14.
In this study, synthesis, characterization, partial hydrolysis, and salt formation of poly(2‐hydroxyethyl methacrylate)‐co‐poly(4‐vinyl pyridine), (poly(HEMA)‐co‐poly‐(4‐VP)) copolymers were investigated. The copolymers were synthesized by free radical polymerization using K2S2O8 as an initiator. By varying the monomer/initiator ratio, chain lengths of the copolymers were changed. The copolymers were characterized by gel permeation chromatography (GPC), viscosity measurements, 1H and 13C NMR and FTIR spectroscopies, elemental analysis, and end group analysis methods. The copolymers were partially hydrolyzed by p‐toluene sulfonic acid monohydrate (PTSA·H2O) and washed with LiOH(aq) solution to prepare electrorheological (ER) active ionomers, poly(Li‐HEMA)‐co‐poly(4‐VP). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3540–3548, 2006  相似文献   

15.
Hydroxyethylcellulose‐g‐methoxypoly (ethylene glycol) (HEC‐g‐PEG) graft copolymers were synthesized through the etherification reaction between the hydroxyl group of hydroxyethylcellulose (HEC) and iodinated methoxypoly (ethylene glycol) (PEG‐I), which was prepared on the basis of two‐step reaction. Fourier transforms infrared spectrum (FTIR), nuclear magnetic resonance (NMR), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), and iodide oxidation method were used to prove the success of synthesis of graft copolymer. Furthermore, the comparative studies of electro‐osmotic flow (EOF) and protein separation in bare‐fused silica, HEC and HEC‐g‐PEG‐coated capillary were performed in capillary electrophoresis (CE). The results showed that HEC‐g‐PEG‐coated capillary presented efficient EOF suppression ability and excellent resisting protein adsorption ability. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
Copolymers of methyl methacrylate (MMA) and fluoroacrylate (FA), with different FA content (0–100 wt %), were prepared by bulk polymerization. The chemical structure was identified by 1H‐NMR and other physical properties were measured by DSC, Abbé refractometer, X‐ray diffractometry, polarized optical microscopy, and DMA. The copolymers were confirmed as random copolymers by Fineman–Ross analysis and first‐order Markov statistics. Increasing the FA content from 0 to 100 wt % decreased the refractive index from 1.492 to 1.368. Copolymers with FA content higher than 70 wt % crystallized and led to low transparency and poor thermal properties. On the other hand, copolymers with FA content lower than 70 wt % was thermally stable (Tg was as high as 60°C) and transparent. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2082–2089, 2004  相似文献   

17.
A series of novel copolymer superabsorbents based on the monomers acrylamide (AM), acrylic acid (AA), acrylonitrile, methacrylic acid, sodium acrylate (SA), and 2‐hydroxyethyl methacrylate (HEMA) were prepared by copolymerization using ammonium persulfate as an initiator and N,N‐methylenebisacrylamide as a crosslinking agent. The experimental results of superabsorbent polymers (SAPs) show that the absorbency in water and NaCl solutions is maximum for AM, SA, HEMA and AM, AA, SA combinations. The copolymers were characterized by IR spectroscopy. The water retention of soil was also enhanced using the above superabsorbents. Use of SAPs for the growth of the croton plant was also investigated. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2635–2639, 2001  相似文献   

18.
New water‐soluble grafted polysaccharides containing sulfobetaine groups were synthesized by the grafting of the sulfobetaine‐type zwitterionic monomer 3‐dimethyl‐(methacryloyloxyethyl)ammonium propane sulfonate (DMAPS) onto hydroxyethyl cellulose (HEC) in the presence of a ceric ammonium nitrate (CAN)/ethylenediaminetetraacetic acid (EDTA) initiation system. The effects of the concentrations of CAN, EDTA, DMAPS, and HEC, as well as the polymerization time and temperature, on the grafting reactions were investigated in terms of the grafting percentage (%GP) and grafting conversion (%GC) of the monomer. The %GP and %GC increased and then decreased with increasing concentrations of CAN, EDTA, and HEC. The %GP and %GC increased with increasing DMAPS concentration up to a certain value, beyond which the %GP did not significantly increase and the %GC decreased. The appropriate polymerization time and temperature were favorable for the grafting reactions. With infrared, thermogravimetric analysis, and viscosity measurements, the resulting grafted polysaccharides were characterized. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2755–2761, 2002; DOI 10.1002/app.10191  相似文献   

19.
Amphiphilic copolymers of poly(styrene‐co‐2‐hydroxyethyl acrylate) (SHEA) and poly(styrene‐coN, N‐dimethylacrylamide) (SAD) of different compositions were prepared by free radical copolymerization and characterized by different techniques. Depending on the nature of the solvent and the densities of interacting species incorporated within the polystyrene matrices, novel materials as blends or interpolymer complexes with properties different from those of their constituents were elaborated when these copolymers are mixed together. The specific interpolymer interactions of hydrogen bonding type and the phase behavior of the elaborated materials were investigated by differential scanning calorimetry (DSC) and Fourier transform infra red spectroscopy (FTIR). The specific interactions of hydrogen bonding type that occurred within the SHEA and within their blends with the SAD were evidenced by FTIR qualitatively by the appearance of a new band at 1626 cm?1 and quantitatively using appropriate spectral curve fitting in the carbonyl and amide regions. The variation of the glass transition temperature with the blend composition behaved differently with the densities of interacting species. The thermal degradation behavior of the materials was studied by thermogravimetry. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Sodium alginate is a natural anionic polysaccharide obtained from natural and microbial resources. It is also used as a flocculating agent and thickener. It is grafted with polyacrylamide, in the presence of ceric ammonium nitrate (CAN) as an initiator. The graft copolymer (SAG‐g‐PAM) is again hydrolyzed with some amount of alkali. The flocculation characteristics of hydrolyzed graft copolymer (Hyd SAG‐g‐PAM) are compared with that of the unhydrolyzed ones, in 5 wt % kaolin and 10 wt % iron ore suspensions. The flocculation characteristics of the hydrolyzed graft copolymer are also compared with those of some of the commercial flocculants. The SAG‐g‐PAM and Hyd SAG‐g‐PAM are characterized by IR and intrinsic viscosity measurements. The rheological properties of aqueous solutions of hydrolyzed and unhydrolyzed graft copolymers are measured by Advanced AR‐1000 Rheometer. There is drastic enhancement in flocculation and viscosifying characteristics on hydrolysis of the graft copolymers. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1480–1488, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号