首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In order to improve the flexibility properties of conventional epoxy resin, two novel soybean oil–based curing agents were synthesized. The curing agent obtained from the reaction between epoxy soybean oil and ethylene diamine was named EEDA, and another curing agent derived from epoxy soybean oil and isophorone diamine was named EIPDA. Several techniques were used to systematically investigate the effects of the structure and content of the two curing agents on the properties of the cured products. The Fourier transform infrared analysis demonstrated that epoxy resin reacted with soybean oil–based curing agents. The differential scanning calorimetry analysis showed that the curing process between diglycidyl ether of bisphenol‐A (DGEBA) and soybean oil–based curing agents only had an exothermic peak. Thermogravimetric analysis indicated that the cured DGEBA/EIPDA system was more stable than the DGEBA/EEDA system below 300 °C. Mechanical tests and Shore D hardness tests suggested that excessive EEDA greatly enhanced the toughness of cured products because of the introduction of aliphatic chains.© 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44754.  相似文献   

2.
曹骏  李诚  范宏 《粘接》2014,(6):32-37,49
评价了3种有机硅多元胺APS、SFA和PSPA分别固化环氧树脂E51(DGEBA)时,固化物的力学性能和粘接强度,并与常见脂肪胺类固化剂[乙二胺、己二胺、聚醚胺(D-230)]作了对比。固化物基体力学和热性能测试表明,有机硅多元胺环氧固化物表现出较佳的冲击强度、弯曲强度和热稳定性。有机硅多元胺/环氧树脂胶粘剂的铁片粘接强度以及耐水性明显高于脂肪胺/环氧胶粘剂体系,其中含苯基有机硅多元胺作为固化剂时粘接强度最高,达到14.8 MPa。()  相似文献   

3.
A series of diphenylsilanediol modified epoxy resins and novel curing agents were synthesized. The modified epoxy resins were cured with regular curing agent diethylenetriamine (DETA); the curing agents were applied to cure unmodified diglycidyl ether of bisphenol A epoxy resin (DGEBA). The heat resistance, mechanical property, and toughness of all the curing products were investigated. The results showed that the application of modified resin and newly synthesized curing agents leads to curing products with lower thermal decomposition rate and only slightly decreased glass transition temperature (Tg), as well as improved tensile modulus and tensile strength. In particular, products cured with newly synthesized curing agents showed higher corresponding temperature to the maximum thermal decomposition rate, comparing with products of DGEBA cured by DETA. Scanning electron microscopy micro images proved that a ductile fracture happened on the cross sections of curing products obtained from modified epoxy resins and newly synthesized curing agents, indicating an effective toughening effect of silicon–oxygen bond.  相似文献   

4.
谭家顶  程珏  郭晶  张军营 《化工学报》2011,62(6):1723-1729
固化剂结构对环氧树脂的固化行为和固化物性能具有重要影响,本文研究了聚醚胺(D-230)、异佛尔酮二胺(IPDA)和3,3'-二甲基-4,4'-二氨基-二环己基甲烷(DMDC) 3种胺类固化剂与实验室自制的低翻度环氧树脂A进行固化反应.通过薪度分析、红外(FTIR)光谱分析、DSC分析等手段研究了环氧树脂与固化剂反应程度...  相似文献   

5.
A novel self‐emulsifiable waterborne amine‐terminated curing agent for epoxy resin based on glycidyl tertiary carboxylic ester (GTCE) was synthesized through three steps of addition reaction, capping reaction, and salification reaction of triethylene tetramine (TETA) and liquid epoxy resin (E‐44). The curing agent with good emulsifying and curing properties was gradually obtained under condition of the molar ratio of TETA: E‐44 as 2.2: 1 at 65 °C for 4 h, 100% primary amine capped with GTCE at 70 °C for 3 h, and 20% salifiable rate with glacial acetic acid. The curing agent was characterized by Fourier transform‐infrared spectroscopy (FT‐IR). The curing behavior of the E‐44/GTCE‐TETA‐E‐44 system was studied with differential scanning calorimetry (DSC) and FT‐IR. Results showed that the optimal mass ratio for E‐44/GTCE‐TETA‐E‐44 system was 3 to 1, and the curing agent showed a relatively lower curing temperature. The cured film prepared by the self‐emulsifiable curing agent and epoxy resin under the optimal mass ratio displayed good thermal property, hardness, toughness, adhesion, and corrosion resistance. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44246.  相似文献   

6.
以蓖麻油和三乙烯四胺为原料合成蓖麻油酸多胺固化剂(COAPA),再将其与没食子酸环氧树脂(GAER)混合组成全生物基GAER/COAPA固化体系,采用非等温差示扫描量热法(DSC)对其固化反应过程进行了研究,确定了固化体系最佳质量配比为7:3(GAER:COAPA),获得了最佳固化工艺温度参数;利用Kissinger方...  相似文献   

7.
The aim of this study was to determine the effect of the ester carbon chain length of curing agents modified by epoxidized oleic esters on the toughness of cured epoxy resins. An amine‐terminated prepolymer (i.e., curing agent G) was synthesized from a bisphenol A type liquid epoxy resin and triethylene tetramine. The toughening curing agents (G1 and G2) were prepared by reactions of epoxidized oleic methyl ester and epoxidized oleic capryl ester, respectively, with curing agent G. Fourier transform infrared spectrometry was used to characterize the chemical structure of the curing agents. The effects of the carbon chain length of the oleic ester group in the curing agents on the toughness and other performances of the curing epoxy resins were investigated by analysis of the Izod impact strength, tensile strength, elongation at break, thermal properties, and morphology of the fracture surfaces of the samples. The results denote that the toughness of the cured epoxy resins increased with the introduction of oleic esters into the curing agents without a loss of mechanical properties and that the toughness and thermal stability of the materials increased with increasing ester carbon chain length. The toughness enhancement was attributed to the flexibility of the end carbon chains and ester carbon chains of the oleic esters in the toughening curing agents. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
A series of imidazole (MI) blocked 2,4‐toluene diisocyanate (TDI) with polyethylene glycol (PEG‐400) as soft segment (PEG‐MI‐b‐TDI) were synthesized for toughening and curing the bisphenol A type epoxy resin (E‐44). Fourier transform infrared (FTIR) spectrum indicates that the NCO groups of the isocyanate molecule are blocked with MI. For curing epoxy systems, elimination of epoxy group and the formation of urethane bonds were studied by FTIR spectroscopy. The results of mechanical property were shown that the tensile shear and impact strengths of neat MI and MI‐b‐TDI cured E‐44 are lower than those of PEG‐MI‐b‐TDI cured E‐44. Based on the scanning electron microscope studies, microstructure evolutions of the E‐44 cured by different curing agents were imaged. The mechanical, thermal, and dynamic mechanical properties were measured by universal testing machine, differential scanning calorimeter and dynamic mechanical analyzer (DMA). The toughness of E‐44 cured by PEG‐MI‐b‐TDI was effectively improved without sacrificing the tensile shear strength. Based on the DMA studies, the long soft chain of PEG brought in a noticeable lowering in the glass transition temperature (Tg). The glass transition temperature is near 165°C for the neat MI cured E‐44, which is higher than the Tgs of the other curing agents cured epoxy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41345.  相似文献   

9.
聚氨酯改性环氧树脂耐磨涂料的研制   总被引:4,自引:0,他引:4  
以2,4-甲苯二异氰酸酯和蓖麻油为原料,合成了聚氨酯预聚体。使用该聚氨酯预聚体对环氧树脂进行了改性。对各种固化剂进行了筛选。最后研制了一种双组分常温固化耐磨涂料。通过正交实验和单因素实验确定了涂料的最佳配方:聚氨酯5 g,环氧树脂10 g,填料3 g,固化剂2.3 g。由此获得的耐磨性优良的涂膜性能为:表干时间10 h,实干时间不到40 h;耐磨性实验中,磨痕弦长5.4 mm;附着力0级,硬度5 H。  相似文献   

10.
In this study, we aimed to reduce the cure time, and to lower the cure temperature of the benzoxazine compound. Therefore, curing reaction of benzoxazine with bisoxazoline or epoxy resin using the latent curing agent and the properties of the cured resins were investigated. The cure behavior of benzoxazine with bisoxazoline or epoxy resin using the latent curing agent was monitored by differential scanning calorimetry and measurements for storage modulus (G′). The properties of the cured resin were estimated by mechanical properties, electrical insulation, water resistance, heat resistance, and flame resistance. As a result, it was confirmed that by using the latent curing agent, cure time of benzoxazine and bisoxazoline or epoxy resin was reduced, and cure temperature was lowered. And it was found that the curing reaction using phenol‐novolac based benzoxazine (Na) as the benzoxazine compound could proceed more rapidly than that using bisphenol‐A based benzoxazine (Ba) as the benzoxazine compound. However, the cured resins from Ba and bisoxazoline or epoxy resin using the latent curing agent showed good heat resistance, flame resistance, and mechanical properties compared with those from Na and bisoxazoline or epoxy resin using the latent curing agent. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
采用巴陵石化的自乳化性中分子质量水性环氧乳液CYDW-112W50及液体双酚A型环氧树脂CYDW-100与4种胺固化剂配制成4种水性体系,通过对涂膜物理、力学和耐腐蚀性的测试研究了不同固化体系和不同环氧与胺氢的配比对水性体系性能的影响。结果表明:离子型水性环氧体系硬度最高,附着力等比较优异,适合用于底涂或中涂;乳液型水性环氧体系柔韧性能较好,适合用于中涂和面涂;胺氢与环氧基团物质的量比为1.0~1.1∶1时,固化物综合性能最优,据此提出了防腐涂料及改性混凝土的参考配方,产品经性能测试达到使用要求。  相似文献   

12.
含聚氨基双马来酰亚胺耐热固化剂的环氧-亚胺胶液   总被引:3,自引:0,他引:3  
双马来酰亚胺与芳香胺先行溶液预聚合,生成的聚氨双马来酰亚胺(PABMI)作为耐热固化剂,与环氧树脂共混制成一系列单组分透明胶液。研究了不同比例的这种环氧-亚胺树脂的共固化反应性、粘结性和固化树脂的耐热性。结果表明,PABMI使环氧树脂耐热性明显提高,随着环氧树脂比例增加,固化加快,粘结性增大,耐热性降低,建议了不同耐热等级时的原料比例。  相似文献   

13.
CA型环氧树脂固化剂性能研究   总被引:3,自引:0,他引:3  
王复兴  林洪碧 《粘接》2000,21(3):15-18
用IR光谱表征了自制CA型环氧树脂固化剂的结构特点,测定了CA型固化剂的固化特性,固化树脂的性能和增塑效果。实验结果表明,CA型固化剂能使环氧树脂涂料在潮湿表面和带油表面上固化成膜,其固化的树脂具有良好的耐蚀性,冲击强度较二乙撑三胺固化的树脂有较大提高,同时也是一种较好的环氧树脂用增塑剂。  相似文献   

14.
高附着耐水煮玻璃漆的研制   总被引:1,自引:0,他引:1  
合成了玻璃环氧底漆,讨论了附着力促进剂、树脂和固化剂种类及用量对涂料性能的影响.结果表明,以1.5%3-缩水甘油醚氧基丙基三甲氧基硅烷为附着力促进剂,以E-20环氧树脂为成膜物、腰果壳油改性酚醛胺为固化剂制成底漆,配合丙烯酸聚氨酯黑面漆,获得了高附着,耐水煮的玻璃漆.  相似文献   

15.
Poly(p‐vinylphenol) (VP) based benzoxazine was prepared from VP, formaline, and aniline. The curing behavior of the benzoxazine with the epoxy resin and the properties of the cured resin were investigated. Consequently, the curing reaction did not proceed at low temperatures, but it proceeded rapidly at higher temperatures without a curing accelerator. The reaction induction time or cure time of the molten mixture from VP based benzoxazine and epoxy resin was found to decrease, compared with those from conventional bisphenol A based benzoxazine and epoxy resin. The curing reaction rate of VP based benzoxazine and epoxy resin increased more than that of conventional bisphenol A based benzoxazine and epoxy resin. The properties of the cured resin from neat resins and from reinforced resins with fused silica were evaluated. The cured resins from VP based benzoxazine and epoxy resin showed good heat resistance, mechanical properties, electrical insulation, and water resistance compared to the cured resin from VP and epoxy resin using imidazole as the catalyst. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 555–565, 2001  相似文献   

16.
A thermoplastic modification method was studied for the purpose of improving the toughness and heat resistance and decreasing the curing temperature of the cured epoxy/4, 4′‐diaminodiphenyl sulfone resin system. A polyimide precursor‐polyamic acid (PAA) was used as the modifier which can react with epoxy. The effects of PAA on curing temperature, thermal stability and mechanical properties were investigated. The initial curing temperature (Ti) of the resin with 5 wt % PAA decreased about 50°C. The onset temperature of thermal decomposition and 10 wt %‐weight‐loss temperature for the resin system containing 2 wt % PAA increased about 60°C and 15°C respectively. Besides, the value of impact toughness and plain strain fracture toughness for the modified epoxy resin increased ~ 190% and 55%, respectively. Those changes were attributed to the outstanding thermal and mechanical properties of polyimide, and more importantly to formation of semi‐interpenetrating polymer networks composed by the epoxy network and linear PAA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
The curing characteristics of epoxy resin systems that include a biphenyl moiety were investigated according to the change of curing agents. Their curing kinetics mainly depend on the type of hardener. An autocatalytic kinetic reaction occurs in epoxy resin systems with phenol novolac hardener, regardless of the kinds of epoxy resin and the epoxy resin systems using Xylok and DCPDP (dicyclopentadiene‐type phenol resin) curing agents following an nth‐order kinetic mechanism. The kinetic parameters of all epoxy resin systems were reported in terms of a generalized kinetic equation that considered the diffusion term. The fastest reaction conversion rate among the epoxy resin systems with a phenol novolac curing agent was obtained in the EOCN‐C epoxy resin system, and for systems with Xylok and DCPDP hardeners, the highest reaction rate values were obtained in NC‐3000P and EOCN‐C epoxy resin systems, respectively. The system constants in DiBenedetto's equation of each epoxy resin system with different curing agents were obtained, and their curing characteristics can be interpreted by the curing model using a curing agent as a spacer. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1942–1952, 2002  相似文献   

18.
A series of latent curing agents were developed by replacing the hydrogen atom on secondary amine in imidazole with methoxy polyethylene glycol maleate diesters via Michael addition reaction. Methoxy polyethylene glycol maleate diesters with different molecular weight also restrained the reactivity of tertiary amine in imidazole ring. The curing properties and pot-life of the modified imidazole/epoxy systems were measured by differential scanning calorimeter and rotational rheometer. The modified imidazole/epoxy system could be cured quickly at 175°C. The modified imidazole shows good latency. After stored for more than 1 month, viscosity of modified imidazole/epoxy system remains unchanged. The longer chain polyether had the better thermal latency these curing agents had. Compared with unmodified imidazole, the novel latent curing agents led to better impact strength for cured epoxy. However, the compatibility between epoxy and latent curing agent will get worse if the molecular weight of polyether unite is over 750.  相似文献   

19.
Three epoxy reaction systems, diglycidyl ether of bisphenol A (DGEBA) with curing agents meta phenylene diamine (mPDA), diaminodiphenyl methane (DDM), and diaminodiphenyl sulfone (DDS), were cured with both pulsed‐power and continuous‐power microwave curing systems. Isothermal curing was conducted at three different temperatures for each reaction system with both pulsed‐power and continuous‐power microwave curing systems. Extent of cure was measured with Fourier Transform Infrared Spectroscopy (FTIR). The temperature characteristics, incident and reflected power patterns, and the reaction rates were compared between the two curing approaches. The incident power and reflected power of both curing processes were observed to reveal reaction status. Continuous‐power microwave curing produced noticeably higher reaction rates than pulsed‐power microwave curing.  相似文献   

20.
The cure behavior of epoxy resin with a conventional amide‐type hardener (HD) was investigated in the presence of castor oil (CO), cashew nut shell liquid (CNSL), and cashew nut shell liquid–formaldehyde resin (CFR) with dynamic differential scanning calorimetry (DSC). The activation energy of the curing reaction was also calculated on the basis of nonisothermal DSC thermograms at various heating rates. A one‐stage curing was noted in the case of epoxy resin filled with CO, whereas the epoxy resin with CNSL and CFR showed a two‐stage curing process. A competitive cure reaction was noted for the epoxy resin/CNSL(or CFR)/HD blends. In the absence of HD, CFR showed lower values of curing enthalpy than that of CNSL. The activation energy of epoxy resin curing increased with increasing CNSL and CFR loading. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号