首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) can be crosslinked by quaternization to develop a positively charged dense network structure. According to this mechanism, PDMAEMA/polysulfone (PSF) positively charged nanofiltration membrane was developed by interfacial crosslinking polymerization using PSF plate microfiltration membrane as support layer, PDMAEMA aqueous solution as coating solution, and p‐xylylene dichloride/n‐heptane as crosslinking agent. Technique and condition of developing membrane such as concentration of coating solution, coating time, pH value of coating solution, content of low molecular weight additive in coating solution, concentration of crosslinking agent, crosslinking time, and number of coatings were studied. FTIR, SEM, and X‐ray photoelectron spectroscopy were used to characterize the structure of membranes. This membrane had rejection to inorganic salts in water solution, the rejection rate to MgSO4 (1 g/L water solution at 0.8 MPa and 30°C) was about 90%, and permeation flux was about 10–20 L m?2 h?1. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2721–2728, 2004  相似文献   

2.
In this article, we prepare chitosan (CS) membrane on polyacrylonitrile (PAN) ultrafiltration membrane, and utilize the protonated amine group (? NH3+) on the CS to retain γ‐aminobutyric acid (GABA) in a solution with a pH condition below the amino acid isoelectric point, so as to separate the amino acid from a mixture with sodium acetate that simulates the amino acid fermentation broth. To improve the acid resistance of the composite membrane, we chelate the amine groups on the CS by copper sulfate first, then crosslink the hydroxyl groups in glutaraldehyde solution, and remove the copper ion in hydrochloric acid finally to release the amine groups. This crosslinked CS/PAN composite membrane achieves 95% GABA rejection in pH 4.69 solution under the operation pressure of 0.2 MPa, while over 90% of the sodium acetate permeates the membrane. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
To optimize the CO2 permeation and CO2/H2 separation performance of hollow fiber‐supported polydimethylsiloxane (PDMS) membranes, the effect of the viscosity of the PDMS coating solution on surface morphologies, thickness of PDMS layer, and solution intrusion into surface pores of hollow fiber supports was investigated. Increases in both stirring time and standing time could increase the viscosity of the PDMS solution. The PDMS layer thickness increased when the coating solution viscosity increased, whereas the surface roughness of the PDMS layer markedly decreased and then slightly changed. Moreover, when the stirring time of the PDMS coating solution was 9 min and the standing time was increased from 2 min to 25 min, the CO2 permeance first decreased, then increased to ~2250 GPU probably due to the decreased intrusion depth, and finally decreased because of the substantially increased thickness of the PDMS layer. However, the CO2/H2 selectivity increased to 3.4 with an increase in coating solution viscosity. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45765.  相似文献   

4.
Through the use of thermal polymerization, poly(vinylidene fluoride) (PVDF) hollow‐fiber membranes modified by a thin layer of molecularly imprinted polymers (MIPs) were developed for the selective separation of levofloxacin. To demonstrate the changes induced by thermal polymerization, PVDF hollow‐fiber membranes with different modification degrees by repeated polymerization were weighed. The total weight of the imprinted membranes increased by 14 μg/cm2 after a five‐cycle polymerization. An increase in the membrane weight indicated the deposition of an MIP layer on the external surface of PVDF hollow‐fiber membranes during each polymerization cycle, which was also characterized by scanning electron microscopy. MIP membranes with different degrees of surface modification provided highly selective binding of levofloxacin. Both hollow‐fiber MIP membranes and nonimprinted membranes showed enhanced adsorption of levofloxacin and ofloxacin gradually with an increase in the modification degrees of PVDF hollow‐fiber membranes to a maximum value followed by a decrease. These results indicate that thermal polymerization indeed produces an MIP layer on the external surface of PVDF hollow‐fiber membranes and that it is feasible to control the permeability by repeated polymerization cycles. Different solvent systems in the permeation experiments were used to understand the hydrophobic interaction as one of the results of the binding specificity of MIP membranes. Selective separation was obtained by multisite binding to the template via ionic, hydrogen‐bond, and hydrophobic interactions. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

5.
An active and stable catalytic composite membrane (CCM), poly(vinyl alcohol)–poly(styrene sulfonic acid)/sodium alginate–poly(vinyl alcohol) (PVA‐PSSA/SA‐PVA), was prepared to enhance the esterification of ethanol and propionic acid. The morphologies and crystal structures of the CCMs were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, and X‐ray diffraction. The effects of catalytic layer thickness, mass ratio of PVA to PSSA, concentration of catalytic layer solution, ratio of reaction volume to membrane area, and molar ratio of propionic acid to ethanol were discussed. The pervaporation results showed that the flux of CCM increased from 118 to 320 g m?2 h?1 compared with the SA‐PVA membrane because of the close affinity and low resistance of PSSA to water. After crosslinking with 3‐aminopropylmethyldiethoxysilane, the CCMs had good catalytic activities. The acid conversion reached 92.8% at 75 °C in 12 h, and the stabilization of the CCM was greatly improved. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46514.  相似文献   

6.
A high‐quality, heterogeneous hollow‐fiber affinity membranes modified with mercapto was prepared through phase separation with blends of a chelating resin and polysulfone as membrane materials, poly(ethylene glycol) as an additive, N,N‐dimethylacetamide as a solvent, and water as an extraction solvent. The effects of the blending ratio and chelating resin grain size on the structure of the hollow‐fiber affinity membrane were studied. The effects of the composition of the spin‐cast solution and process parameters of dry–wet spinning on the structure of the heterogeneous hollow‐fiber affinity membrane were investigated. The pore size, porosity, and water flux of the hollow‐fiber affinity membrane all decreased with an increase in the additive content, bore liquid, and dry‐spinning distance. With an increase in the extrusion volume outflow, the external diameter, wall thickness, and porosity of the hollow‐fiber affinity membrane all increased, but the pore size and water flux of the hollow‐fiber affinity membrane decreased. It was also found that the effects of the internal coagulant composition and external coagulant composition on the structure of the heterogeneous hollow‐fiber affinity membrane were different. The experimental results showed that thermal drawing could increase the mechanical properties of the heterogeneous hollow‐fiber affinity membrane and decrease the pore size, porosity, and water flux of the heterogeneous hollow‐fiber affinity membrane, and the thermal treatment could increase the homogeneity and stability of the structure of the heterogeneous hollow‐fiber affinity membrane. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

7.
cis,cis‐1,3,5‐Triaminocyclohexane (TAC) was synthesized and used to prepare composite nanofiltration (NF) membranes by interfacial polymerization with trimesoyl chloride (TMC). The surface elemental composition, morphology, and hydrophilicity of the prepared NF membranes were characterized. The separation performances were examined with various salts and polyethylene glycol (PEG400, PEG600) solutions. The effects of preparation conditions were also systematically studied. The NF membrane was negatively charged and exhibited a salt rejection in the order Na2SO4 (98.2%) > MgSO4 (90.8%) > MgCl2 (84.5%) > NaCl (54.6%). The water permeability was 1.56 L m?2 h?1 bar?1, and the molecular weight cutoff was 600 Da. The TAC/TMC membrane exhibited some characteristics that were different from the ones made from common diamines such as m‐phenylenediamine: (1) the surface was smoother, without a ridge‐and‐valley structure; (2) there were two kinds of crosslinking points in the polyamide chains; (3) the active layer was formed faster (only 5 seconds was required to reach a Na2SO4 rejection of 98%). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43511.  相似文献   

8.
The present study proposes a facile route for the modification of commercial nanofiltration (NF) polymeric membrane by embedding metal organic framework (MOF) via dip coating. A mixed membrane matrix comprising of copper benzene-1,3,5-tricarboxylate (CuBTC) and polyvinyl alcohol (PVA) served as the new active layer. The obtained topography, functional group, and surface elemental analysis elucidated the presence of heterogeneous phase and the distribution of the MOF on the membrane. The dip coating well supported the modification through excellent adhesion. The water wettability of the modified membrane displayed a positive correlation with CuBTC loading in the PVA polymer matrix. Permeation and separation characteristics of the resultant membranes were investigated by retaining protein and carbohydrates from synthetic dairy wastewater (SDWW). The permeability rate of modified samples increased to 43% as compared to the commercial NF membrane. A significant improvement in the rejection rate of carbohydrate from 61% to 87% and protein from 88% to 94% was achieved. Membrane Fouling was found to be much lesser for the modified samples. The study highlights the potential of CuBTC as filler material for enhancing the separation characteristic of established NF membrane.  相似文献   

9.
To overcome the plasticization effect in polyimide membranes, many researchers have proposed crosslinking method. This can reduce an inter-segmental mobility by tightening and rigidifying the polymer chains. However, it is difficult to modify the whole polymer chains throughout the membrane because the reaction can be hindered by the diffusion rate of the crosslinker. In particular, it is hard for bulky crosslinker to penetrate a dense membrane with a small d-spacing. This study investigated the effect of crosslinking a dense Matrimid membrane with p-phenylenediamine (p-PDA) via two different crosslinking methods (i.e., methanol-swelling crosslinking process [M-SCP] and liquid-phase crosslinking process [L-PCP]). Most of the crosslinking reaction in M-SCP occurs on the membrane surface due to difficulty in penetration of the bulky p-PDA into the Matrimid dense membrane. In contrast, the L-PCP allows uniform crosslinking across the membrane. The membranes crosslinked using L-PCP showed excellent chemical resistance. Furthermore, the plasticization phenomenon was not observed in the membranes crosslinked using L-PCP with p-PDA more than 15%. Meanwhile, the membrane crosslinked using M-SCP exhibited poor plasticization and chemical resistance properties. These results showed that the L-PCP method can be more effective for the crosslinking of dense membrane to deliver both high plasticization and chemical resistance.  相似文献   

10.
In this study, a fabricated hydrophilic poly(vinyl alcohol‐co‐ethylene) (PVA‐co‐PE) nanofiber membrane was used as the middle support layer to prepare thin film composite (TFC) membranes for nanofiltration. The effects of the supporting nonwoven layer, grams per square meter (GSM) of nanofiber, reaction time, heat treatment, monomer concentration, operating pressure, and pH value on the separation performance of the TFC membranes were analyzed. These results show that the TFC membranes prepared with the PVA‐co‐PE nanofiber membrane can be used to filtrate different metal ions. For NaCl, Na2SO4, CaCl2, CuCl2, CuSO4, and methyl orange solutions, the rejection rates of the TFC membrane with nonwoven polyester as the supporting layer and a nanofiber GSM of 12.8 g/m2 are 87.9%, 93.4%, 92.0%, 93.1%, 95.8%, and 100%, respectively. This indicates the potential application of the PVA‐co‐PE nanofiber membrane in the preparation of nanofiltration and reverse‐osmosis TFC membranes. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46261.  相似文献   

11.
The TiO2 nanoparticles were incorporated into an ethyl cellulose (EC) matrix to improve the pervaporation (PV) performance of the membrane for gasoline desulfurization. The microstructures of different EC membranes were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X‐ray and transmission electron microscopy. The PV experiments showed that the hybrid membrane of EC/TiO2 demonstrated an improved permeation flux (J ) of 7.58 kg m?2 h?1 and a sulfur enrichment factor (α) of 3.13 in comparison with the pure EC membrane, with a J of 3.73 kg m?2 h?1 and an α of 3.69. In addition, the effects of the operating conditions, including the operating temperature, layer thickness, crosslinking time, feed flow rate, and feed sulfur content level, on the PV performance of the EC/TiO2 membrane were investigated. Under a 100 mL/min feed flow rate and a 85 μg/g sulfur content, J of the 10 μm thick membrane increased to 7.58 kg m?2 h?1 with α of 3.13 compared to the pure EC membrane (3.73 kg m?2 h?1, 3.69) at 80 °C with 30 min of crosslinking time. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 : 134 , 43409.  相似文献   

12.
Polyimide (PI) membrane has been proven to be an efficient approach for solvent recovery. However, the inherent fragility of the PI membrane limits the range of separation conditions and process economics. In this study, copolyimides were synthesized from 3,3′,4,4′‐benzophenone–tetracarboxylic dianhydride (BTDA) and 4,4′‐biamino‐3,3′‐dimethyldiphenyl–methane (DMMDA) by chemical imidization in a two‐step procedure. Then, a PI nanofiltration (NF) membrane was prepared through a phase‐inversion process for solvent recovery from lube oil filtrates. The results indicated that the immersion of the PI (BTDA–DMMDA) NF membrane in a 1,6‐diaminohexane/ethanol crosslinking agent solution carried on the chemical crosslinking modification, which could effectively improve the solvent resistance of the NF membrane. Moreover, the addition of inorganic salt in the polymer solution further enhanced the solvent resistance and pressure resistance of the membrane, which was favorable for the solvent recovery. The lubricant rejection was above 93%, and the solvent flux was about 30 L m?2 h?1 with the NF membrane prepared in optimum conditions, and this membrane showed great potential for future development in the application of solvent recovery from lube oil filtrates. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40338.  相似文献   

13.
Alternating deposition of oppositely charged polyelectrolyte complexes (PECs) on inorganic–organic composite membranes can efficiently overcome the drawback of microcracks induced by inorganic particles. Different bilayers of Poly (diallyldimethylammonium, chloride)/sulfonated poly(ether ether ketone) (PDDA/SPEEK) were first deposited on the charged silicon composite with hydrolyzed polyacrylonitrile (PAN‐H) support and evaluated for solvent resistant nanofiltration membranes (SRNF) application. The morphology of the membranes was studied in detail via SEM and AFM. Because of Donnan exclusion, the multilayered PEC silicon composite membranes showed very high retentions up to 99% for negatively charged solutes (Rose Bengal (RB), 1017 Da) in the pressure driven filtration of isopropanol (IPA) solutions. For the first time, PEC‐based silicon composite membranes were also applied in the filtration of organic solvents, where they were found to combine a remarkable stability in polar solvents with high fluxes and retentions. Compared with silicon composite membranes, the introduction of multilayered PDDA/SPEEK can efficiently improve the membrane performance and overcome the drawback induced by inorganic fillers. PEC‐based silicon composite membranes thus show excellent prospective use in SRNF. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
The goal of this study was to prepare positively charged nanofiltration (NF) membranes to remove cations from aqueous solutions. A composite NF membrane was fabricated by the modification of a polysulfone ultrafiltration support. The active top layer was formed by the interfacial crosslinking polymerization of poly(ethylene imine) (PEI) with p‐xylene dichloride (XDC). Then, it was quaternized by methyl iodide (MI) to form a perpetually positively charged layer. The chemical and morphological changes of the membrane surfaces were studied by Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy. To optimize the membrane operation, the PEI solution concentration, PEI coating time, XDC concentration, crosslinking time, and MI concentration were optimized. Consequently, high water flux (5.4 L m?2 h?1 bar?1) and CaCl2 rejection (94%) values were obtained for the composite membranes at 4 bars and 30°C. The rejections of the NF membrane for different salt solutions, obtained from pH testing, followed the order Na2SO4 < MgSO4 < NaCl < CaCl2. The molecular weight cutoff was calculated by the retention of poly(ethylene glycol) solutions with different molecular weights, and finally, the stoke radius was calculated as 1.47 nm. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41988.  相似文献   

15.
A hydrophilic compound, taurine, was investigated as an additive in the interfacial polymerization between piperazine (PIP) and trimesoyl chloride (TMC) to prepare thin‐film composite (TFC) membranes. The resulting membranes were characterized by X‐ray photoelectron spectroscopy and attenuated total reflectance–Fourier transform infrared spectroscopy. The morphology and hydrophilicity of the membranes were investigated through scanning electronic microscopy and water contact angle measurements. The separation performance of the TFC membranes was investigated through water flux and salt rejection tests. The protein‐fouling resistance of the films was evaluated by water recovery rate measurements after the treatment of bovine serum albumin. The membrane containing 0.2 wt % taurine showed the best performance of 92% MgSO4 rejection at a flux of 31 L m?2 h?1 and better antifouling properties than the PIP–TMC membranes. An appropriately low concentration of taurine showed the same MgSO4 rejection as the PIP–TMC membranes but a better fouling resistance performance. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41620.  相似文献   

16.
A kind of heterogeneous hollow‐fiber affinity filter membrane with a high chelating capacity for Hg2+ was prepared by phase separation with blends of a mercapto chelating resin and polysulfone as the membrane materials, N,N‐dimethylacetamide as the solvent, and water as the extraction solvent. The adsorption isotherms of the hollow‐fiber affinity filter membrane for Hg2+ were determined. The heterogeneous hollow‐fiber affinity filter membrane was used for the adsorption of Hg2+ cations through the coordination of the mercapto group and Hg2+ cations, and the effects of the morphology and structure of the affinity membrane on the chelating properties were investigated. The chelating conditions, including the chelating resin grain size, pH value, concentration of the metallic ion solution, mobile phase conditions, and operating parameters, had significant effects on the chelating capacity of the hollow‐fiber affinity filter membrane. The results revealed that the greatest chelating capacity of the hollow‐fiber affinity filter membrane for Hg2+ was 1090 μg/cm2 of membrane under appropriate conditions, and the adsorption isotherms of Hg2+ could be described by the Langmuir isotherm. The dynamic chelating experiments indicated that the hollow‐fiber affinity membrane could be operated at a high feed flow rate and that large‐scale removal of Hg2+ could be realized. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
In this work, a novel approach to improve the antifouling properties of membrane surfaces was developed. First, a polydopamine layer was attached onto the surface of an ultrahigh molecular weight polyethylene/fabric composite microporous membrane based on dopamine self‐polymerization and adhesive behavior. Then, methoxy polyethylene glycol amine was covalently bonded with the polydopamine layer via a Schiff base reaction. The physicochemical properties of the modified composite membrane surface were investigated, and the results indicated this modification could effectively enhance the membrane surface hydrophilicity. Furthermore, the protein fouling resistance of both dopamine‐coated and methoxy polyethylene glycol amine immobilized composite membranes was evaluated. It was found that a dopamine coating cannot obviously enhance the membrane antifouling properties due to its strong bioadhesion behavior. However, the antifouling properties of the composite membranes were significantly improved after being immobilized with a methoxy polyethylene glycol amine layer. Consequently, a layer‐by‐layer modified composite membrane with excellent antifouling property was obtained. The pure water flux and flux recovery ratio of the resultant membrane were 764 L m?2 h?1 and 83%, respectively. The aim of this paper was to provide an effective approach to optimizing the separation efficiency and antifouling performance of the ultrahigh molecular weight polyethylene/fabric composite membrane. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46428.  相似文献   

18.
Polyamide thin film composite hollow fiber membranes have advantages in their unique structure compared to flat sheet membranes. This study examined interfacial polymerization methods for fabricating pilot scale hollow fiber membranes (membrane area: 1.2 m2, number of hollow fiber strands: 1200). For use in osmotic pressure‐driven processes, a one‐pot hydrophilic interfacial polymerization procedure was developed simultaneously to modify the surface property and synthesize polyamide thin film. With the procedure, a pilot scale module has a water flux of 13 LMH using a draw solution of 0.6M NaCl and a feed solution of distilled water through the design of the module configuration. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46110.  相似文献   

19.
For the applications of reverse osmosis (RO) process, membrane fouling caused by organic molecule adsorption is still a serious problem which significantly decreases membrane lifespan and increases operation costs. In this present article, we report the thin film composite (TFC) RO membrane functionalized with tris(hydroxymethyl)aminomethane (THAM) using one‐step method for improved antifouling property. The results of surface characterization indicated that THAM was successfully grafted onto the active layer of membrane by covalent linkage. Mult‐hydroxyl‐layer was generated and remained steadily on TFC membrane surface after modification. The contact angle decreased from 75.9 ± 3.0° to 46.9 ± 2.3°, which showed a distinct improvement of membrane surface hydrophilicity after modification. The grafted THAM improved water flux by 28.3%, while salt rejection was almost unchanged in membrane property tests. The modified membranes presented preferable antifouling property to foulants of bovine serum albumin, sodium alginate, and dodecyl trimethyl ammonium bromide than that of pristine membranes during dynamic fouling experiments. The method in this study provided an effective way to improve antifouling property of the polyamide thin‐film‐composite RO membrane. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45891.  相似文献   

20.
The effect of sulfonation and bromination‐sulfonation on the gas transport properties of polyphenylene oxide has been investigated. These high‐performance modified polymers have been studied in the form of TFC membranes by solution coating on the skin side of polyetherimide hollow fibers. TFC membrane modules prepared from sulfonated‐brominated polyphenylene oxide as the active layer coated on polyetherimide hollow fibers. Stability of the TFC membranes was greatly improved when a wet feed stream was used instead of a dry one. Water vapor in the feed stream most likely prevented the active layer from stress cracking on drying. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 275–282, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号