共查询到20条相似文献,搜索用时 15 毫秒
1.
Chuanyong Yu Pengfei Ju Hongqi Wan Lei Chen Hongxuan Li Huidi Zhou Jianmin Chen 《应用聚合物科学杂志》2020,137(21):48730
The irradiation conditions in the low earth orbit (LEO) severely inhibit the development of polymeric materials for solid lubrication coatings used on the external surfaces of spacecraft. To solve the problem, octavinyl polyhedral oligomeric silsesquioxanes (OvPOSS) were covalently grafted onto poly(methyl/butyl methacrylate) composites (PMB). The results showed that the appropriate incorporation of OvPOSS (10 wt %) significantly reduced the friction coefficient and improved the wear resistance of the OvPOSS/PMB composite coatings. Furthermore, the impact of OvPOSS on the tribological properties of PMB/polytetrafluoroethylene (PTFE) lubrication coatings in the space environment was investigated. In particular, the degradations, mass losses, surface morphologies, and chemical compositions of POSS/PMB/PTEF composite coatings were characterized under ultraviolet (UV), electric irradiation (EI), and atomic oxygen (AO). The results indicated that OvPOSS provides numerous Si O Si bonds in the polymer matrix that improve the resistance to UV and EI. Besides, a passivating SiO2 layer was formed to prevent further erosion and degradation of the underlying PMB and PTFE components during AO irradiation. Particularly, the wear resistance of OvPOSS/PMB/PTFE coatings under AO irradiation increased significantly compared with the pristine PMB/PTFE coating. Overall, our results indicate that POSS-containing composites are a good prospective material for space application in the LEO. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48730. 相似文献
2.
Tribological properties of polyimide coatings filled with PTFE and surface‐modified nano‐Si3N4 下载免费PDF全文
Polyimide (PI) coatings filled with PTFE and nano‐Si3N4 were prepared by a spraying technique and successive curing. Nano‐Si3N4 particles were modified by grafting 3‐aminopropyltriethoxysilane to improve their dispersion in the as‐prepared coatings. Friction and wear performances and wear mechanisms of the coatings were evaluated. The results show that the incorporations of PTFE and modified nano‐Si3N4 particles greatly improve the friction reduction and wear resistance of PI coating. The friction and wear performance of the composite coating is significantly affected by the filler mass fraction and sliding conditions. PI coating incorporated with 20 wt % PTFE and 5 wt % modified nano‐Si3N4 displays the best tribological properties. Its wear rate is more than one order of magnitude lower and its friction coefficient is over two times smaller than that of the unfilled PI coating. Differences in the friction and wear behaviors of the hybrid coatings as a function of filler or sliding condition are attributed to the filler dispersion, the characteristic of transfer film formed on the counterpart ball and the wear mechanism of the coating under different sliding conditions. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40410. 相似文献
3.
Tribological and thermal properties of hexagonal boron nitride filled high‐performance polymer nanocomposites 下载免费PDF全文
High‐performance polymer nanocomposites based on poly(aryletherketone) (PAEK) as matrix and hexagonal boron nitride (h‐BN) nanopowder as reinforcement were fabricated using planetary ball mill followed by hot pressing. The addition of h‐BN (0–5 wt %) to the matrix enhanced the microhardness and thermal stability compared to pure matrix. For a constant sliding speed, the wear rate of the nanocomposites determined by using Pin‐on‐Disk tribometer was reduced approximately 22 times compared to pure matrix. The coefficient of friction of the nanocomposites is slightly increased but it is stable compared to that of pure matrix. It was also investigated that the thermal stability of the debris of the nanocomposites was decreased compared to the pure matrix and its nanocomposites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44409. 相似文献
4.
分别研究了不同含量钛酸钾晶须(PTW)、碳纤(CF)填充聚四氟乙烯(PTFE)复合材料在硫酸溶液中和干摩擦条件下摩擦学性能以及酸中的耐蚀性能,借助SEM等分析探讨了相关机理。结果表明,酸中纯PTFE耐磨性较干摩擦条件下提高了2个数量级,摩擦系数也只有干摩擦的15.3%。与CF/PTFE相比,PTW/PTFE复合材料在酸中显示更好的耐蚀和耐磨性能。PTW可以进一步提高PTFE酸中耐磨性能、降低摩擦系数。含15%(质量)PTW时复合材料具有最低的磨损率,此时比纯PTFE酸中耐磨性提高13.8倍,是相同含量CF/PTFE耐磨性的3.2倍。由于酸溶液的冷却和润滑作用,复合材料的摩擦系数与干条件相比明显降低。然而,酸溶液阻止了转移膜的形成。不管是干摩擦还是在酸性溶液中,当填料含量超过15%(质量)时,犁削和磨粒磨损是PTFE复合材料的主要磨损机理。 相似文献
5.
Polytetrafluoroethylene (PTFE) composites filled with PTFE waste offer interesting combination of tribological properties and low cost. PTFE composites waste was mechanically cut and sieved into powders. PTFE composites filled with PTFE waste powders were prepared by compression molding. Friction and wear experiments were carried out in a reciprocating sliding tribotester at a reciprocating frequency of 1.0 Hz, a contact pressure of 5.5 MPa, and a relative humidity of (60 ± 5)%. PTFE materials slid against a 45 carbon steel track. Results showed that a PTFE composite (B) filled with 20 wt % PTFE waste exhibited a coefficient of steady‐state friction slightly higher than that of unfilled PTFE (A), while wear resistance over two orders of magnitude higher than that of unfilled PTFE (A). Another PTFE composite filled with PTFE waste and alumina nanoparticles exhibited the highest wear resistance among the three PTFE materials. This behavior originates from the effective reinforcement of PTFE waste as a filler. It was experimentally confirmed that the low cost recycling of PTFE waste without by‐products is feasible. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1035–1041, 2007 相似文献
6.
Friction and wear behaviors of poly (vinyl alcohol) (PVA) modified PBO fabric composites were evaluated in a pin‐on‐disc friction and wear tester, and the relationship between the properties and the structure change resulting from PVA modification were intensively investigated using thermogravimetric analysis (TG) and scanning electronic microscope (SEM) equipped with an energy dispersive spectrometer (EDS). The results indicated that the PVA thin film formed on the fabric surface by chemical crosslinking reaction could improve the antiwear property of the PBO fabric composites efficiently. In argon‐300°C condition, the antiwear property of the PBO fabric composites was improved by 35%, which was due to the improvement of the bonding strength between the fabric and resin and the dispersion of the shear stress induced by the shear creep and plastic deformation of the PVA film in friction. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1313‐1320, 2013 相似文献
7.
Tribological behaviors of carbon series additions reinforced CF/PTFE composites at high speed 下载免费PDF全文
The tribological, mechanical, and thermal properties of carbon series additions reinforced CF/PTFE composites at high speed were investigated. In this work, carbon fiber (CF) filled polytetrafluoroethylene (PTFE) composites, which have excellent tribological properties under normal sliding speed (1.4 m/s), were filled with some carbon materials [graphene (GE), carbon nanotubes (CNTs) and graphite (Gr)] respectively to investigate the tribological properties of CF/PTFE composites at high sliding speed (2.1 and 2.5 m/s). The results reveal that the carbon series additions can improve the friction and anti‐wear performances of CF/PTFE, and GE is the most effective filler. The wear rate of 0.8 wt % GE/CF/PTFE was decreased by 50 ? 55%, 55 ? 60%, 40 ? 45% at 1.4, 2.1, and 2.5 m/s compared with CF/PTFE. SEM study shows GE could be helpful to form smooth and continuous transfer film on the surface of counterparts. Meanwhile, GE can improve its tensile strength and elastic modulus obviously. Thin layer structure of GE could enhance the thermal conductivity, which can be helpful to dissipate heat of CF/PTFE composites wear surface. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43236. 相似文献
8.
Tribological performance of filled PTFE‐based friction material for ultrasonic motor under different temperature and vacuum degrees 下载免费PDF全文
In this work, a glass fiber reinforced polytetrafluoroethylene (PTFE)‐based friction material with good properties for ultrasonic motor was fabricated. The effects of temperature and vacuum degree on the tribological behavior of the PTFE‐based friction material were investigated; the evolutions of friction‐wear modes and mechanisms were also discussed as function of temperature and vacuum degree. The results show that the delamination and fatigue wear are predominant under the effects of repeated shearing and dynamic contact under atmospheric environment. While wear mechanisms change from adhesive to abrasive and fatigue wear as it is cooled from 30 to ?60 °C at vacuum environment. Under high vacuum, adhesive wear was prone to taking place at room temperature for high frictional heat which increased the wear rate and extended the running‐in period. Experiment shows that the highest no‐load speed, output power, and holding torque of ultrasonic motor at room temperature under atmospheric environment are 220 rpm, 9.9 W, and 1.21 N m, respectively. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45358. 相似文献
9.
In this work, a novel graphene oxide (GO)-fly ash cenospheres (FACs) hybrid fillers was introduced to improve the wear and corrosive resistance of epoxy resin (ER) composite coatings. The tribological behavior and the corrosion performance of three kinds of coatings (pure ER, GO/ER and GO-FACs/ER coatings) were studied and the reinforced mechanisms of coatings filled by different fillers were analyzed. The friction coefficient and wear rate of the ER coatings were decreased with the addition of GO-FACs hybrids. The scanning electron microscope images showed that the dispersibility and compatibility of GO-FACs hybrids were effectively improved compared with that of GO sheet. The water contact angle examination indicated that the hydrophobicity of the GO-FACs/ER coatings increased. The electrochemical impedance spectroscopy (EIS) results demonstrated that the GO-FACs/ER coatings have better anticorrosion performance compared with the pure ER coatings and the GO/ER coatings. The hydrophobic surface and the well dispersed fillers constitute the dual barrier to resist the corrosion medium. 相似文献
10.
Guihua Li Haiyan Xu Hongqi Wan Lei Chen Yinping Ye Yanjun Ma Yulong An Huidi Zhou Jianmin Chen 《应用聚合物科学杂志》2021,138(39):51003
The aims of this work are to prepare a novel epoxy resin-polytetrafluoroethylene (expressed as EP/PTFE) bonded solid lubricating coating filled with flake aluminum. The focus is to study the effects of two different flake aluminum (floating type and non-floating type) on the tribological performance and anti-corrosion capability of the coating. A CSM friction tester was applied to evaluate the tribological performance of the coating. The electrochemical technique was applied to study the corrosion resistance of the coating. And the experimental results showed that both types of flake aluminum can ameliorate the tribological performance and anti-corrosion properties of the EP/PTFE lubricating coating. Moreover, compared with floating flake aluminum, the incorporation of non-floating flake aluminum significantly improved the tribological properties and corrosion resistance of the EP/PTFE coating due to its good dispersibility, greater enhancement effect on mechanical performance and stronger barrier properties. 相似文献
11.
Enhanced tribological performance of hybrid polytetrafluoroethylene/Kevlar fabric composite filled with milled pitch‐based carbon fibers 下载免费PDF全文
As self‐lubricating bearing liner materials, tribological properties of milled pitch‐based carbon fibers (CFs) modified polytetrafluoroethylene (PTFE)/Kevlar fabric composites were investigated, and the microscopic morphology of worn surface was studied. The results show that the appropriate incorporation of CFs can obviously reduce the wear rate of the fabric composite with almost unchanging friction coefficient. The wear rates of 5 wt % CF‐filled PTFE/Kevlar fabric composites are decreased by 30% and 48% for two kinds of composites made with fibers from different producers compared with unfilled fabric composites. Scanning electron microscopy observations show that the appropriate incorporation of CFs obviously improves the interfacial bonding and reduces pull‐out and fracture of Kevlar fiber. Meanwhile, the introduction of CFs at proper fraction is helpful to form smooth and continuous transfer film on the surface of metal counterpart. The improving mechanism of the CF is attributed to increasing mechanical strength, thermal conductivity and self‐lubricating effects. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46269. 相似文献
12.
Research on the tribological performance of Cr2O3 filled with bronze‐based PTFE composites 下载免费PDF全文
Enhancement of the wear resistance of bronze‐filled polytetrafluoroethylene (PTFE) composites has been achieved using various fillers, for example, chromic oxide (Cr2O3), molybdenum disulfide (MoS2), graphite, and nanometer aluminum oxide (n‐Al2O3), in the present study. The wear resistance was evaluated by a block‐on‐ring wear tester, and the effects of fillers on the wear resistance as well as the mechanism were investigated. The wear rate for the composite where the recipe containing 59% PTFE + 40% bronze + 1% Cr2O3 was 0.5 × 10?5 mm?3/N m and for the composite in the recipe containing 60% PTFE + 40% bronze was 4.2 × 10?5 mm?3/N m, which meant that that Cr2O3 increased the wear resistance by approximately 10 times. The differential scanning calorimetry measure analysis showed that Cr2O3 had a positive effect on the crystallization of PTFE; the crystallinity of PTFE composites increased from 45% to 52%, which exhibited improved wear resistance. Wear testing and scanning electron microscope analysis had shown that Cr2O3 had a positive effect on the formation of transfer film and keeping it stable to exhibit improved wear resistance. X‐ray photoelectron spectroscopy results also showed that Cr2O3 was effective in tribochemical reactions during sliding against stainless ring; these maybe responsible for forming transfer film and lowering wear rate of composite. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41117. 相似文献
13.
Polytetrafluoroethylene (PTFE)‐based composites, filled with CeO2, CeF3, and La2O3 in volume contents of 5, 10, 15, 20, and 30%, were prepared. Then, the friction and wear behavior of these PTFE composites sliding against GCr15 bearing steel under both dry and liquid paraffin‐lubricated conditions was evaluated using an MHK‐500 ring‐on‐block wear tester. Finally, the worn surfaces and the transfer films of these PTFE composites were investigated using a scanning electron microscope (SEM) and an optical microscope. Experimental results showed that filling CeO2, CeF3, and La2O3 into PTFE can reduce the wear of the PTFE composites by 1–2 orders of magnitude. When the content of CeO2 in PTFE is 15%, the friction and wear properties of the CeO2‐filled PTFE composite are the best. Meanwhile, when the content of La2O3 in PTFE is between 15 and 20%, the PTFE composite filled with La2O3 exhibits excellent friction and wear‐reducing properties. However, the friction coefficient of the CeF3‐filled PTFE composite increases but its wear decreases with increase in the content of CeF3 from 5 to 30%. The friction and wear‐reducing properties of CeO2‐, CeF3‐, and La2O3‐filled PTFE composites can be greatly improved by lubrication with liquid paraffin, but the limit loads of the PTFE composites decrease with increase in the content of CeO2, CeF3, and La2O3 in PTFE (from 5 to 30%) under the same conditions. Investigations of worn surfaces show that the interaction between liquid paraffin and the CeO2‐, CeF3‐, and La2O3‐filled PTFE composites, especially the absorption of liquid paraffin into the microdefects of the PTFE composites, creates some cracks on the worn surfaces of the PTFE composites and that the creation and development of the cracks reduces the mechanical strength and the load‐supporting capacity of the PTFE composites. However, with increase of the content of CeO2, CeF3, and La2O3 in the PTFE, the microdefects in the PTFE composites also increase, which would lead to increase in the number of the cracks on the worn surfaces of the PTFE composites under load and, so, in turn, lead to the reduction of the limit loads of the CeO2‐, CeF3‐, and La2O3‐filled PTFE composites under lubrication with liquid paraffin. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 78: 797–805, 1999 相似文献
14.
Friction and wear properties of graphene oxide/ultrahigh‐molecular‐weight polyethylene composites under the lubrication of deionized water and normal saline solution 下载免费PDF全文
Ultrahigh‐molecular‐weight polyethylene (UHMWPE) and UHMWPE composites reinforced with graphene oxide (GO) were successfully fabricated through a new step of liquid‐phase ultrasonic dispersion, high‐speed ball‐mill mixing, and hot‐pressing molding technology. When the GO/UHMWPE composites were lubricated with deionized water (DW) and normal saline (NS) solution, their friction and wear properties were investigated through sliding against ZrO2. The worn surface and wear volume losses of these composites were studied with scanning electron microscopy, X‐ray photoelectron spectroscopy, and a Micro‐XAM 3D non‐contact surface profiler. The results show that the microhardness of the GO/UHMWPE composites was improved by 13.80% and the wear rates were decreased by 19.86 and 21.13%, whereas the depths of the scratches were decreased by 22.93 and 23.77% in DW and NS lubricating conditions, respectively. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39640. 相似文献
15.
A silicon oxide (SiO2) nanoparticles-decorated short carbon fiber (SCF) hybrid (SCF-SiO2) was designed to improve the weak interfacial bonding between fibers and matrix. Nano-SiO2 was grafted onto carbon fibers by introducing amino group and epoxy group on the surface of carbon fibers and SiO2, respectively. The chemical composition of SCF-SiO2 was analyzed by Fourier transform infrared spectrometer and energy-dispersive spectrometry, the microstructure of SCF-SiO2 were investigated by scanning electron microscope, and then the hybrid filler was introduced into Poly(ether ether ketone) (PEEK). Due to the strong interfacial interaction between filler and matrix, the mechanical and tribological properties of SCF-SiO2/PEEK composites were significantly better than SCF/PEEK composites. In order to further improve the tribological properties of the composites, micrometer-sized cenosphere (CS) particles were introduced into the aforementioned system to prepare multicomponent composites. The test results of friction and wear indicate that the CS/SCF-SiO2/PEEK composites have the optimal tribological properties. Compared with pure PEEK, the friction coefficient of CS/SCF-SiO2/PEEK composites under 200 N load decreases by 56.4% and the specific wear rate decreases by 87.4%. Meanwhile, the thermal decomposition temperature of CS/SCF-SiO2/PEEK composites is increased by 40 °C compared to pure PEEK. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48749. 相似文献
16.
Five kinds of polytetrafluoroethylene (PTFE)‐based composites, pure PTFE, PTFE + 30(v)% MoS2, PTFE + 30(v)% PbS, PTFE + 30(v)% CuS, and PTFE + 30(v)% graphite (GR) composites, were first prepared. Then the friction and wear properties of these PTFE composites, sliding against GCr15‐bearing steel under both dry and liquid paraffin‐lubricated conditions, were studied by using an MHK‐500 ring‐on‐block wear tester. Finally, the worn surfaces and the transfer films of the PTFE composites formed on the surface of GCr15 bearing steel were investigated by using a scanning electron microscope (SEM) and an optical microscope, respectively. Experimental results show that filling with MoS2, PbS, CuS, or graphite to PTFE can reduce the wear of the PTFE composites by two orders of magnitude compared to that of pure PTFE under dry friction conditions. However, the friction and wear‐reducing properties of these PTFE composites can be greatly improved by lubrication with liquid paraffin. Investigations of transfer films show that MoS2, PbS, CuS, and graphite promote the transfer of the PTFE composites onto the surface of GCr15‐bearing steel under dry friction conditions, but the transfer of the PTFE composites onto the surface of GCr15‐bearing steel can be greatly reduced by lubrication with liquid paraffin. SEM examinations of worn surfaces show that with lubrication of liquid paraffin, the creation and development of the cracks occurred on the worn surfaces of the PTFE composites under load, which reduces the load‐supporting capacity of the PTFE composites. This would lead to the deterioration of the friction and wear properties of the PTFE composites under higher loads (>600N). © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 751–761, 1999 相似文献
17.
Hong Liu Yongfeng Jia Hongding Wang Chunjian Duan Tingmei Wang Qihua Wang 《应用聚合物科学杂志》2020,137(40):49222
Herein, the tribological performance, thermal and compression resistance behavior of polyimide (PI) reinforced by Fe2O3 decorated reduced graphene is systematically investigated. The remarkable synergistic effect of Fe2O3 decorated reduced graphene oxide (RGO) is demonstrated in its PI wear resistance, and PI/RGO/Fe2O3 composites show good thermal stability and much higher compression resistant ability than PI, PI/RGO, and PI/Fe2O3 composites when the filling contents are same. Additionally, the PI/RGO/Fe2O3 composites also exhibited ultra-wear-resistant properties under high load condition, and the lowest wear rate is 3.18 × 10−8 mm3N−1 m−1, which is an order of magnitude lower than that of pure PI. The investigation of its tribological mechanism also showed strong synergistic effect and interface force of Fe2O3 decorated RGO, which contribute to its high-performance friction-reducing behaviors. These findings give an inside view to Fe2O3 decorated RGO and its polyimide composites, and open an avenue for the graphene oxide (GO) based composite to act as compression wear-resisting solid fillers and lubricants when polymer composite with excellent compressive, thermal and tribological properties is required. 相似文献
18.
In order to study the effect of nanocopper oxide (n-CuO) on the friction properties of fluorosilicone rubber (FVMQ), the mechanical blending method was used by adding n-CuO in preparation of FVMQ. Characterization of scanning electron microscopy, X-ray diffraction analysis, energy dispersive spectroscopy, and so on were utilized for studying the mechanism of n-CuO in FVMQ. The experimental test on tensile, tear, and friction performance were performed on n-CuO/FVMQ at both room temperature (RT) and 200°C. In comparison with n-CuO /FVMQ, the wear depth of FVMQ increased by 52.933 and 5.605 μm for RT and 200°C, respectively. Besides, the wear loss of FVMQ increased by 2.9 and 5.3 mg, respectively. The results show that for both at RT or 200°C, the addition of n-CuO changes the friction mechanism of FVMQ. The friction coefficient and wear loss of FVMQ are effectively reduced, so that the friction property of rubber matrix is significantly enhanced. In addition, the tearing property of FVMQ is improved by adding n-CuO to change the crosslinking density of FVMQ. 相似文献
19.
To improve the tribological properties of benzoxazine (BOZ) resin, bismaleimides (BMI) resin is chosen as organic phase, hyperbranched polysilane functionalized SiO2 nanoparticles (HBPSi‐SiO2) are chosen as inorganic modifiers to prepare HBPSi‐SiO2/BOZ‐BMI composites using high shear and ultrasonic processes. The effect of content of HBPSi‐SiO2 on the mechanical properties and tribological properties of the composites are investigated. The results show that suitable addition of HBPSi‐SiO2 can largely enhance the impact strength, reduce the friction coefficient, and wear rate of BOZ‐BMI resin. Scanning electron microscopy is employed to research the wearing mechanism of materials. The severe wear of the BOZ pure resin is owing to fatigue wear, and the moderate wear of BOZ‐BMI resin is attributed to adhesive wear. While, the mild wear of the composites with HBPSi‐SiO2 is due to abrasive wear. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
20.
The polyamide (PA) composite coating filled with the particles of microsized MoS2, microsized graphite, and nano‐Al2O3, respectively, were prepared by flame spraying. The friction and wear characteristics of the PA coating and composite coating filled with the varied content of filler under dry sliding against stainless steel were comparatively investigated using a block‐ring tester. The morphologies of the worn surfaces and transfer films on the counterpart steel ring were observed on a scanning electron microscope. The result showed that the addition of fillers to the composite coatings changed significantly the friction coefficient and wear rate of the coatings. The composite coatings filled with a low level content of fillers showed lower wear rate than did pure PA coating under dry sliding; especially the MoS2/PA composite coating had the lowest wear rate among these composite coatings. The composite coatings with a high level content of fillers had higher wear rate than did pure PA coating, except of the Al2O3/PA composite coating. The bonding strengths between the polymer matrix and fillers changed with the content of the fillers, which accounted for the differences in the tribological properties of the composite coatings filled with the varied content fillers. On the other hand, the difference in the friction and wear behaviors of the composite coatings and pure coating were attributed to the difference in their worn surface morphologies and transfer film characteristics. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007 相似文献