首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural fiber composites are known to have lower mechanical properties than glass or carbon fiber reinforced composites. The hybrid natural fiber composites prepared in this study have relatively good mechanical properties. Different combinations of woven and non‐woven flax fibers were used. The stacking sequence of the fibers was in different orientations, such as 0°, +45°, and 90°. The composites manufactured had good mechanical properties. A tensile strength of about 119 MPa and Young's modulus of about 14 GPa was achieved, with flexural strength and modulus of about 201 MPa and 24 GPa, respectively. For the purposes of comparison, composites were made with a combination of woven fabrics and glass fibers. One ply of a glass fiber mat was sandwiched in the mid‐plane and this increased the tensile strength considerably to 168 MPa. Dynamic mechanical analysis was performed in order to determine the storage and loss modulus and the glass transition temperature of the composites. Microstructural analysis was done with scanning electron microscopy. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Hybrid composites were fabricated by compounding process with varying the relative weight fraction of oil palm empty fruit bunch (EFB) and coir fibers to assess the effect of hybridization of oil palm EFB with coir fibers in polypropylene (PP) matrix. The mechanical and morphological properties of oil palm/coir hybrid composites were carried out. Tensile and flexural properties of oil EFB‐PP composites enhanced with hybridization of coir fibers except coir/oil palm EFB (25:75) hybrid composite, whereas highest impact properties at oil palm:coir fibers with 50:50 ratios. Results shown that hybrid composites with oil palm:coir fibers with 50:50 ratios display optimum mechanical properties. In this study, scanning electron microscopy (SEM) had been used to study morphology of tensile fractured surface of hybrid composites. Its clear from SEM micrograph that coir/EFB (50:50) hybrid composites display better tensile properties due to strong fiber/matrix bonding as compared with other formulations which lead to even and effective distribution of stress among fibers. The combination of oil palm EFB/coir fibers with PP matrix produced hybrid biocomposites material can be used to produce components such as rear mirrors' holder and window levers, fan blades, mallet, or gavel. POLYM. COMPOS., 35:1418–1425, 2014. © 2013 Society of Plastics Engineers  相似文献   

3.
Multi‐axial multi‐ply fabric (MMF) composites are becoming increasingly popular as reinforcing materials in high‐performance composites due to their high mechanical properties. This work aimed to study the effects of three variable parameters including fiber contents, numbers of plies, and layer orientations on the mechanical properties of MMF composites. Unidirectional carbon fibers and a two‐part epoxy resin were employed to produce the composite laminates using the manual lay‐up process. It was found that the mechanical properties of composites made with 5‐ply were slightly greater than 3‐ply composites. However, there was no highly significant difference between them. Generally, the angle‐ply of the composites showed the greatest effect on the mechanical properties compared with number of plies and layer orientations. The significant improvements in mechanical properties of the composites were further supported using scanning electron microscopy (SEM). Morphologies of the tensile fracture surfaces of composites revealed that the presence of fiber pulled out results in the creation of voids between the fibers and matrix polymer. This causes the mechanical properties of the composites to be reduced. Finally, the enhancement of mechanical properties of composites clearly confirmed that angle‐ply layer (0°,?35°,0°,+35°,0°) had the most significant reinforcing effect among other parameters evaluated. POLYM. ENG. SCI., 54:2676–2682, 2014. © 2013 Society of Plastics Engineers  相似文献   

4.
The mechanical properties of a short glass-fiber reinforced composite based on a commercial polypropylene grade was compared to a composite system where the bulk material had been replaced by a propylene/4-(hept-6-enyl)-2,6-di-tert-butylphenol copolymer. The mechanical properties of the composites were determined by standard tensile tests. The results indicated that the composite based on the copolymer exhibited a noticeable improvement in tensile properties compared to the composite based on commercial polypropylene. The improved mechanical properties can be attributed to higher wetting of the fibers and to enhanced interfacial adhesion between the fiber and the matrix relative to the composite based on the commercial polypropylene. These assumptions are supported by scanning electron microscopy analysis. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Silane‐grafted polypropylene manufactured by a reactive grafting process was used as the coupling agent in polypropylene/glass‐fiber composites to improve the interaction of the interfacial regions. Polypropylene reinforced with 30% by weight of short glass fibers was injection‐molded and the mechanical behaviors were investigated. The results indicate that the mechanical properties (tensile strength, tensile modulus, flexural strength, flexural modulus, and Izod impact strength) of the composite increased remarkably as compared with the noncoupled glass fiber/polypropylene. SEM of the fracture surfaces of the coupled composites shows a good adhesion at the fiber/matrix interface: The fibers are coated with matrix polymer, and a matrix transition region exists near the fibers. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1537–1542, 1999  相似文献   

6.
Creep properties of 2D woven CVI and PIP SiC/SiC composites with Sylramic™-iBN SiC fibers were measured at temperatures to 1650 °C in air and the data was compared with the literature. Batch-to-batch variations in the tensile and creep properties, and thermal treatment effects on creep, creep parameters, damage mechanisms, and failure modes for these composites were studied. Under the test conditions, the CVI SiC/SiC composites exhibited both matrix and fiber-dominated creep depending on stress, whereas the PIP SiC/SiC composites displayed only fiber-dominated creep. Creep durability in both composite systems is controlled by the most creep resistant phase as well as oxidation of the fibers via cracking matrix. Specimen-to- specimen variations in porosity and stress raisers caused significant differences in creep behavior and durability. The Larson-Miller parameter and Monkman-Grant relationship were used wherever applicable for analyzing and predicting creep durability.  相似文献   

7.
Composites with different jute fabric contents and polypropylene (PP) were prepared by compression molding. The composite tensile modulus increased as the fiber content increased, although the strain at break decreased due to the restriction imposed on the deformation of the matrix by the rigid fibers. Moreover, and despite the chemical incompatibility between the polar fiber and the PP matrix, the tensile strength increased with jute content because of the use of long woven fibers. The interfacial adhesion between jute and PP was improved by the addition of different commercial maleated polypropylenes to the neat PP matrix. The effect of these coupling agents on the interface properties was inferred from the resulting composite mechanical properties. Out‐of‐plane instrumented falling weight impact tests showed that compatibilized composites had lower propagation energy than uncompatibilized ones, which was a clear indication that the adhesion between matrix and fibers was better in the former case since fewer mechanisms of energy propagation were activated. These results are in agreement with those found in tensile tests, inasmuch as the compatibilized composites exhibit the highest tensile strength. Scanning electron microscopy also revealed that the compatibilized composites exhibited less fiber pullout and smoother fiber surface than uncompatibilized ones. The thermal behavior of PP–compatibilizer blends was also analyzed using differential scanning calorimetry, to confirm that the improvements in the mechanical properties were the result of the improved adhesion between both faces and not due to changes in the crystallinity of the matrix. Copyright © 2006 Society of Chemical Industry  相似文献   

8.
In this study, the hybrid composites were prepared by stacking jute/PP nonwoven and flax/MAPP woven fabrics in defined sequences. Polypropylene (PP) and maleic anhydride grafted polypropylene (MAPP) were used as matrix materials. Jute and flax fibers were treated with alkali solution in order to improve the interface properties of the resultant composites. The mechanical properties of these hybrid composites were analyzed by means of tensile, flexural, and drop‐weight impact tests. The effect of fabric stacking sequence on the mechanical properties of the composites was investigated. The stacking of nonwovens at the top and in alternate layers has resulted in maximum flexural strength, flexural stiffness, and impact force. It was also shown that hybrid composites have improved tensile, flexural, and impact properties in comparison to neat PP matrix. POLYM. COMPOS., 36:2167–2173, 2015. © 2014 Society of Plastics Engineers  相似文献   

9.
《Ceramics International》2020,46(9):13088-13094
Continuous silicon carbide fiber reinforced silicon carbide matrix (SiCf/SiC) composites have promising applications in aero-engine due to their unique advantages, such as low density, high modulus and strength, outstanding high temperature resistance and oxidation resistance. As SiC fibers are main reinforcements in SiCf/SiC composites, the crystallization rate and initial damage degree of SiC fibers are seriously influenced by preparation temperatures of SiCf/SiC composites, namely mechanical properties of SiC fibers and SiCf/SiC composites are influenced by preparation temperatures. In this paper, KD-II SiC fibers were woven into 3D4d preforms and SiC matrix was fabricated by PIP process at 1100 °C, 1200 °C, 1400 °C and 1600 °C. Digital image correlation (DIC) method was adopted to measure the uniaxial tensile properties of these SiCf/SiC composites. In addition, finite element method (FEM) based on representative volume element (RVE) was adopted to predict the mechanical properties of SiCf/SiC composites. The good agreements between numerical results and experimental results of uniaxial tensile tests verified the validity of the RVE. In last, the transverse tensile, transverse shear, uniaxial shear properties were predicted by this method. The predicted results illustrated that axial tensile, transverse tensile and axial shear properties were greatly influenced by the preparation temperatures of SiCf/SiC composites while transverse shear properties were not significantly various. And the mechanical properties of SiCf/SiC composites peaked at 1200 °C among these four temperatures while their values reached their lowest points at 1600 °C because of thermal damage and brittle failure of SiCf/SiC composites.  相似文献   

10.
The aim of the present work is to study the effect of conventional textile treatments of woven flax on the mechanical properties and the water sorption of flax/epoxy composites. The flax fabrics are standard 2/2 twills. Various treatments are carried out on fabric such as mercerization, bleaching, and leaching for long fibers or on yarn such as leaching for short fibers. A model, based on a modified rule of mixture applied to composite reinforced with woven fabric, is developed to include the effect of fiber and porosity volume fractions on composite stiffness and strength. Most treatments improve tensile stiffness and strength of flax/epoxy composite and reduce composite water sorption. We prove by X‐ray fluorescence analysis, thermogravimetric analysis, and tensile tests of dry fabric that it is due to an improvement in the interfacial bonding between fibers and matrix. The best performances are achieved with bleaching and mercerization treatment. The weakest performances are obtained with the composites made with leached yarns. POLYM. COMPOS., 34:1761–1773, 2013. © 2013 Society of Plastics Engineers  相似文献   

11.
Isothermal tensile creep tests were conducted on 2D woven and laminated, 0/90 balanced melt infiltration (MI) SiC/SiC composites at stress levels from 48 to 138 MPa and temperatures to 1400°C in air. Effects of fiber architecture and fiber types on creep properties, influence of accumulated creep strain on in-plane tensile properties, and the dominant constituent controlling the creep behavior and creep rupture properties of these composites were investigated. In addition, the creep parameters of both composites were determined. Results indicate that in 2D woven MI SiC/SiC composites with Sylramic™-iBN or Hi-Nicalon™-S fibers, creep is controlled by chemical vapor infiltration (CVI) SiC matrix, whereas in 2D laminated MI SiC/SiC composites with Hi-Nicalon™-S fibers, creep is controlled by the fiber. Both types of composites exhibit significant variation in creep behavior and rupture life at a constant temperature and stress, predominantly due to local variation in microstructural inhomogeneity and stress raisers. In both types of composites at temperatures >1350°C, residual silicon present in SiC matrix to reacts with SiC fibers and fiber coating causing premature creep rupture. Using the creep parameters generated, the creep behaviors of the composites have been modeled and factors influencing creep durability are discussed.  相似文献   

12.
The challenges of using natural fibers in polymer composites include high moisture uptake and poor interfacial bonding with thermoplastic matrix. In this study, the effect of hybridization was investigated to address the challenges of high moisture uptake and balanced mechanical properties in natural fiber reinforced polymer composites. Polyethylene terephthalate fiber (PET) was used in woven kenaf reinforced POM due to its hydrophobic characteristics. The results of tensile test showed that the tensile strength of the interwoven POM/kenaf/PET hybrid composite when tested along kenaf fiber direction, increased from 72 to 85 MPa due to increase in fiber content. Similarly, the tensile strength of the interwoven POM/kenaf/PET hybrid composite increased from 67 to 75 MPa. However, the flexural strength of the interwoven POM/kenaf/PET hybrid composite dropped from 160.1 to 104.9 MPa while that of woven POM/kenaf composite dropped from 191.4 to 90.3 MPa. The interwoven hybrid composite also showed significant improvement in impact strength compared to the woven POM/kenaf composite. The water absorption of the woven POM/kenaf composite dropped by approximately 30% due to hybridization with PET fiber. The results confirmed that hybridization with PET fiber significantly improved the tensile and impact properties of the woven composite and increased its resistance to moisture uptake. POLYM. COMPOS., 35:1900–1910, 2014. © 2014 Society of Plastics Engineers  相似文献   

13.
An innovative manufacturing process for continuous fiber composites with the polymeric matrix made up of polypropylene and epoxy resin, as a model reactive low molecular weight component, was developed; variable process parameters give rise to different morphologies of matrix components surrounding the woven fabric reinforcement. Furthermore, the combination of both thermoplastic and thermosetting polymers permitted intimate fibers impregnation, typical of thermosetting matrix composites, with short process cycle time, which usually occurs in manufacturing process of thermoplastic matrix composites. Polypropylene (PP) films, glass fibers fabric, and epoxy resin film were used to produce flat composite through film‐stacking technique. The preparation process focused on control of both epoxy resin cure process and polypropylene melting. The process was able to induce the two matrix components to form either a planar (sandwich‐like) structure or a three‐dimensional (3D) network by means of controlling the process parameters such as pressure and heating rate. The strong enhancement of the mechanical properties (Young's modulus and tensile strength of the composites with the 3D structure were almost twice as high of those of the composites with sandwich‐like matrix structure) was due to the different microstructures produced by the interplanar flow of the thermoplastic polymer. POLYM. COMPOS., 31:1762–1769, 2010. © 2010 Society of Plastics Engineers.  相似文献   

14.
The objective of this work was to characterize the microstructure, mechanical properties and residual stresses in glass fiber reinforced polypropylene (PP) composites with respect to the thermoforming parameters and as a function of the fiber-matrix interface quality. First, differential scanning calorimetry (DSC) was used to investigate the crystallization behavior of the PP matrix. Second, short beam shear tests and tensile tests in the ±45° directions have been conducted to characterize respectively the interfacial strength and the matrix properties in the composites. Finally, residual stresses were measured via the curvatures of unsymmetric cross-plied laminates. The cooling rate was found to be a critical parameter of the molding process since the matrix crystallization temperature, the interfacial strength as well as the residual stresses showed large variations with various cooling rates. At slow cooling, the crystallization process initiates at higher temperatures and covers longer time periods resulting in more spherulitical matrix structures. In this case, the composites becomes stiffer but also fragile indicating a decrease in the stress transfer efficiency at the interface level. This effect was also observed in the improved interface system, suggesting that the fiber-matrix interaction operates through the amorphous phase surrounding the fibers. The fiber-matrix interface improvement was accompanied by an increase in residual stresses, possibly due to the inhibition of some stress relief mechanism.  相似文献   

15.
In this study, the tensile behavior of different natural fiber reinforced composite materials were analyzed. The statistical analysis used to study the natural fibers in the first article, has been extended to analyze the behavior of PP‐matrix composites, combining the probability density function estimation of fiber properties with the Halpin‐Tsai equation. In this case, the advanced statistical approach overestimates the mechanical properties of the composites, probably because of the poor matrix‐fiber adhesion between polypropylene and natural fibers in the real system. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

16.
Jute‐fibers‐reinforced thermoplastic composites are widely used in the automobile, packaging, and electronic industries because of their various advantages such as low cost, ease of recycling, and biodegradability. However, the applications of these kinds of composites are limited because of their unsatisfactory mechanical properties, which are caused by the poor interfacial compatibility between jute fibers and the thermoplastic matrix. In this work, four methods, including (i) alkali treatment, (ii) alkali and silane treatment, (iii) alkali and (maleic anhydride)‐polypropylene (MAPP) treatment, and (iv) alkali, silane, and MAPP treatment (ASMT) were used to treat jute fibers and improve the interfacial adhesion of jute‐fiber‐reinforced recycled polypropylene composites (JRPCS). The mechanical properties and impact fracture surfaces of the composites were observed, and their fracture mechanism was analyzed. The results showed that ASMT composites possessed the optimum comprehensive mechanical properties. When the weight fraction of jute fibers was 15%, the tensile strength and impact toughness were increased by 46 and 36%, respectively, compared to those of untreated composites. The strongest interfacial adhesion between jute fibers and recycled polypropylene was obtained for ASMT composites. The fracture styles of this kind of composite included fiber breakage, fiber pull‐out, and interfacial debonding. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers.  相似文献   

17.
Mechanical properties (tensile, flexural, impact, and dynamic mechanical thermal analysis) of novolac type phenolic composites reinforced with jute/cotton hybrid woven fabrics were investigated as a function of fiber orientation and roving/fabric characteristics. Scanning electron microscopy (SEM) was carried out to investigate the fiber‐matrix adhesion. Results showed that the composite properties are strongly influenced by test direction and rovings/fabric characteristics. The anisotropy degree was shown to increase with test angle and to strongly depend on the type/architecture of fabric used, i.e., jute rovings diameter, relative fiber content, etc. It was possible to obtain composites with higher mechanical properties and lower anisotropy degree by producing cross‐ply laminates. Best overall mechanical properties were obtained for the composites tested along the jute rovings direction. Composites tested at 45° and 90° with respect to the jute roving direction exhibited a controlled brittle failure combined with a successive fiber pullout, while those tested in the longitudinal direction (0°) exhibited a catastrophic failure mode. Our results indicate that jute promotes a higher reinforcing effect and cotton avoids catastrophic failure. Therefore, this combination of natural fibers is suitable to product composites for lightweight structural applications. POLYM. COMPOS., 26:1–11, 2005. © 2004 Society of Plastics Engineers.  相似文献   

18.
The influence of high-temperature argon heat-treatment on the microstructure and room- temperature in-plane tensile properties of 2D woven CVI and 2D unidirectional MI SiC/SiC composites with Hi-Nicalon?-S SiC fibers was investigated. The 2D woven CVI SiC/SiC composites were heat-treated between 1200 and 1600 °C for 1- and 100-hr, and the 2D unidirectional MI SiC/SiC composites between 1315 and 1400 °C for up to 2000 hr. In addition, the influence of temperature on fast fracture tensile strengths of these composites was also measured in air. Both composites exhibited different degradation behaviors. In 2D woven CVI SiC/SiC composites, the CVI BN interface coating reacted with Hi-Nicalon?-S SiC fibers causing a loss in fast fracture ultimate tensile strengths between 1200 and 1600 °C as well as after 100-hr isothermal heat treatment at temperatures > 1100 °C. In contrast, 2D unidirectional MI SiC/SiC composites showed no significant loss in in-plane tensile properties after the fast fracture tensile tests at 1315 °C. However, after isothermal exposure conditions from 1315° to 1400°C, the in-plane proportional limit stress decreased, and the ultimate tensile fracture strain increased with an increase in exposure time. The mechanisms of strength degradation in both composites are discussed.  相似文献   

19.
The aim of this work is to study the effect of kenaf volume content and fiber orientation on tensile and flexural properties of kenaf/Kevlar hybrid composites. Hybrid composites were prepared by laminating aramid fabric (Kevlar 29) with kenaf in three orientations (woven, 0o/90o cross ply uni‐directional (UD), and non‐woven mat) with different kenaf fiber loadings from 15 to 20% and total fiber loading (Kenaf and Kevlar) of 27–49%. The void content varies between 11.5–37.7% to laminate with UD and non‐woven mat, respectively. The void content in a woven kenaf structure is 16.2%. Tensile and flexural properties of kenaf/Kevlar hybrid composites were evaluated. Results indicate that UD kenaf fibers reinforced composites display better tensile and flexural properties as compared to woven and non‐woven mat reinforced hybrid composites. It is also noticed that increasing volume fraction of kenaf fiber in hybrid composites reduces tensile and flexural properties. Tensile fracture of hybrid composites was morphologically analysed by scanning electron microscopy (SEM). SEM micrographs of Kevlar composite failed in two major modes; fiber fracture by the typical splitting process along with, extensive longitudinal matrix and interfacial shear fracture. UD kenaf structure observed a good interlayer bonding and low matrix cracking/debonding. Damage in composite with woven kenaf shows weak kenaf‐matrix bonding. Composite with kenaf mat contains the high void in laminates and poor interfacial bonding. These results motivate us to further study the potential of using kenaf in woven and UD structure in hybrid composites to improve the ballistic application, for example, vehicle spall‐liner. POLYM. COMPOS., 36:1469–1476, 2015. © 2014 Society of Plastics Engineers  相似文献   

20.
The use of woven betel palm and kenaf lignocellulosic fibers as a reinforcing phase in unsaturated polyester was reported. The morphology, physical properties, and mechanical properties of the natural fibers and resulting woven composites were evaluated. Kenaf fibers exhibit higher tensile properties than betel palm fibers due to the higher amount of cellulose content. From the morphology observation, it is found that the alkaline treatment of the fibers effectively clean the fiber surface and increase the fiber surface roughness. Comparison between treated and untreated woven betel palm and kenaf composites at 7 vol% of fiber content was carried out. Interestingly, untreated woven kenaf composites exhibit comparable flexural strength with those of untreated woven betel palm composites. However, untreated kenaf composites exhibit superior flexural modulus to those of betel palm composites. In general, mechanical properties of the woven composites made from alkali-treated fibers were superior to the untreated fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号