首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Epoxidized soybean oil (ESO) was cured with a terpene‐based acid anhydride (TPAn) at 150°C, and the thermal and mechanical properties of the cured product were compared with ESO cured with hexahydrophthalic anhydride (HPAn), maleinated linseed oil (LOAn), or thermally latent cationic polymerization catalyst (CPI). The ESO‐TPAn showed a higher glass transition temperature (67.2°C) measured by dynamic mechanical analysis than ESO‐HPAn (59.0°C), ESO‐LOAn (?41.0°C), and ESO‐CPI (10.0°C). The storage modulus at 20°C of ESO‐TPAn was higher than those of ESO‐LOAn and ESO‐CPI. Also, ESO‐TPAn showed higher tensile strength and modulus than the other cured ESOs. Regarding the biodegradability measured by biochemical oxygen demand in an activated sludge, ESO‐TPAn possessed some biodegradability, which was lower than that of ESO‐LOAn. Next, biocomposites composed of ESO‐TPAn and regenerated cellulose (lyocell) fabric were prepared by compression molding method. The tensile strength of ESO‐TPAn/lyocell composites increased with increasing fiber content. The tensile strength and modulus of ESO‐TPAn/lyocell composite with fiber content 75 wt % were 65 MPa and 2.3 GPa, which were three times higher than those of ESO‐TPAn. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
Resin transfer molding (RTM) has the potential to manufacture high quality, geometrically complex composite parts. Benzoxazine is a new kind of high performance composite matrix. It can be polymerized with a ring‐opening reaction without releasing volatiles. In this article, a novel RTM resin made from aromatic diamine, phenol and formaldehyde is reported. The viscosity and curing behavior of the RTM resin as well as the properties of the cured neat resin and fiber reinforced composite were investigated. The resin has a viscosity lower than 0.5 Pa · s after 4 hr at 100°C, and can be cured at 180°C. The tensile strength, modulus, and elongation of the cast resin are 94 MPa, 4.6 GPa, and 2.2%, respectively. The flexural strength and modulus of the cast resin are 160 MPa and 4.9 GPa. The flexural strength and modulus of its glass fiber laminate are 662 MPa and 30 GPa. It is very easy to control the viscosity and curing rate of the RTM resin through the addition of reactive dilute agents and catalysts according to the requirement of RTM processing. POLYM. COMPOS., 26:563–571, 2005. © 2005 Society of Plastics Engineers  相似文献   

3.
Bisphthalonitrile (BAPh)/polyarylene ether nitrile end‐capped with hydroxyl groups (PEN‐OH) composite laminates reinforced with glass fiber (GF) have been fabricated in this article. The curing behaviors of BAPh/PEN‐OH prepolymers have been characterized by differential scanning calorimetry and dynamic rheological analysis. The results indicate that with the introduction of PEN‐OH the curing temperature of BAPh has decreased to 229.6–234.8°C and BAPh/PEN‐OH prepolymers exhibit large processing windows with relatively low melt viscosity. The BAPh/PEN‐OH/GF composite laminates exhibit tensile strength (272.4–456.5 MPa) and modulus (4.9–10.0 GPa), flexural strength (507.1–560.9 MPa), and flexural modulus (24.0–30.4 GPa) with high thermal (stable up to 538.3°C) and thermal stabilities (stable up to 475.5°C). The dielectric properties of BAPh/PEN‐OH/GF composite laminates have also been investigated, which had little dependence on the frequency. Meanwhile, scanning electron microscopy results show that the BAPh/PEN‐OH/GF composite laminates display excellent interfacial adhesions between the matrix and GFs. Herein, the BAPh/PEN‐OH matrix can be a good matrix for high‐performance polymeric materials and the advanced BAPh/PEN‐OH/GF composite laminates can be used under high temperature environment. POLYM. COMPOS., 34:2160–2168, 2013. © 2013 Society of Plastics Engineers  相似文献   

4.
Composites with good toughness properties were prepared from chemically modified soy epoxy resin and glass fiber without additional petroleum based toughening agent. Chlorinated soy epoxy (CSE) resin was prepared from soybean oil. The CSE was characterised by spectral, and titration method. The prepared CSE was blended with commercial epoxy resin in different ratios and cured at 85°C for 3 h, and post cured at 225°C for 2 h using m‐phenylene diamine (MPDA) as curing agent. The cure temperatures of epoxy/CSE/MPDA with different compositions were found to be in the range of (151.2–187.5°C). The composite laminates were fabricated using epoxy /CSE/MPDA‐glass fiber at different compositions. The mechanical properties such as tensile strength (248–299 MPa), tensile modulus (2.4–3.4 GPa), flexural strength (346–379 MPa), flexural modulus (6.3–7.8 GPa) and impact strength (29.7–34.2) were determined. The impact strength increased with the increase in the CSE content. The interlaminor fracture toughness (GIC) values also increased from 0.6953 KJ/m2 for neat epoxy resin to 0.9514 KJ/m2 for 15%CSE epoxy‐modified system. Thermogravimetric studies reveal that the thermal stability of the neat epoxy resin was decreased by incorporation of CSE. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

5.
采用热压工艺制造聚丙烯(PP)/甘蔗皮纤维复合材料,并研究其拉伸性能。研究热压温度为175℃、压力为2 MPa、时间15 min工艺条件下纤维粒径大小和质量分数对复合材料拉伸强度和拉伸弹性模量的影响。结果表明:在甘蔗皮纤维质量分数为40%条件下,复合材料拉伸性能随着粒径减小呈现先增加后减少的趋势,当纤维粒径为40~60目(0.45~0.3 mm)时材料拉伸强度最大,为8.58 MPa,此时弹性模量为2.44 GPa;在相同纤维粒径40~60目条件下,纤维质量分数为40%时PP复合材料拉伸强度最大,纤维质量分数为50%时PP复合材料拉伸弹性模量最大,达到2.65 GPa。根据实验结果,甘蔗皮纤维增强PP复合材料在纤维粒径为40~60目、质量分数在40%时综合拉伸性能最佳。  相似文献   

6.
As a new biobased epoxy resin system, epoxidized soybean oil (ESO) was cured with tannic acid (TA) under various conditions. When the curing conditions were optimized for the improvement of the thermal and mechanical properties, the most balanced properties were obtained when the system was cured at 210°C for 2 h at an epoxy/hydroxyl ratio of 1.0/1.4. The tensile strength and modulus and tan δ peak temperature measured by dynamic mechanical analysis for the ESO–TA cured under the optimized condition were 15.1 MPa, 458 MPa, and 58°C, respectively. Next, we prepared biocomposites of ESO, TA, and microfibrillated cellulose (MFC) with MFC contents from 5 to 11 wt % by mixing an ethanol solution of ESO and TA with MFC and subsequently drying and curing the composites under the optimized conditions. The ESO–TA–MFC composites showed the highest tan δ peak temperature (61°C) and tensile strength (26.3 MPa) at an MFC content of 9 wt %. The tensile modulus of the composites increased with increasing MFC content and reached 1.33 GPa at an MFC content of 11 wt %. Scanning electron microscopy observation revealed that MFC was homogeneously distributed in the matrix for the composite with an MFC content of 9 wt %, whereas some aggregated MFC was observed in the composite with 11 wt % MFC. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
Composites were prepared with chemically modified banana fibers in polypropylene (PP). The effects of 40‐mm fiber loading and resin modification on the physical, mechanical, thermal, and morphological properties of the composites were evaluated with scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Infrared (IR) spectroscopy, and so on. Maleic anhydride grafted polypropylene (MA‐g‐PP) compatibilizer was used to improve the fiber‐matrix adhesion. SEM studies carried out on fractured specimens indicated poor dispersion in the unmodified fiber composites and improved adhesion and uniform dispersion in the treated composites. A fiber loading of 15 vol % in the treated composites was optimum, with maximum mechanical properties and thermal stability evident. The composite with 5% MA‐g‐PP concentration at a 15% fiber volume showed an 80% increase in impact strength, a 48% increase in flexural strength, a 125% increase in flexural modulus, a 33% increase in tensile strength, and an 82% increase in tensile modulus, whereas the heat deflection temperature increased by 18°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
Cellulose fiber‐reinforced phenolic composites were prepared and characterized by mechanical tests and morphological analysis in this study. First, preparation of the phenolic matrix was optimized using an experimental design. The variables studied were curing temperature and time. The responses measured were strength, elongation, modulus, and strain energy density, in tensile and flexural tests. After fixing the optimal curing conditions of the matrix at 75°C and 2.75 h, the effect of a latest drying stage was studied. Strengths in tensile and flexural tests of the matrix after the incorporation of the drying stage were 156 and 189% of the strengths of the undried matrix, and elastic moduli were three‐fold. Finally, cellulose fibers were incorporated as reinforcement. Alkali treatment of the fibers (1 and 5% NaOH), employment of silanes as coupling agents [(3‐aminopropyl) trimethoxysilane (APS) and 3‐(2‐aminoethylamino) propyltrimethoxysilane (AAPS)], and combined treatments alkali‐silane were tested. The AAPS silane treated cellulose fiber‐reinforced phenolic composite was the material with the best mechanical performance and adhesion fiber–matrix. The most significant improvements obtained with the AAPS silane treatment of the fibers were 25, 52, and 110% for tensile strength, elongation, and SED, respectively, in relation to the unreinforced material properties. POLYM. ENG. SCI., 54:2228–2238, 2014. © 2013 Society of Plastics Engineers  相似文献   

9.
The influence of acetylation on the mechanical, thermal and thermodegradative behavior of sisal fiber‐reinforced PP, PP/HDPE and PP/HDPE with functionalized and non‐functionalized EPR composites was studied. Acetylation of the fiber improves adhesion of the fiber to the polyolefin matrix. In general, acetylation of the sisal fiber was found to enhance the tensile strength and modulus of the resulting composites, except in some cases. Thermal properties suggest that the mixing and molding temperatures are between 160 and 230 °C and that when acetylated fiber is mixed with polyolefins, greater polymer‐fiber interactions takes place, which slightly favor stability of these composite materials. The results allow us to suggest that a satisfactory profit/cost relation justifies the addition of acetylated fiber to PP, PP/HDPE, and PP/HDPE/EPR. © 2000 Society of Chemical Industry  相似文献   

10.
Electron‐beam (E‐Beam) curing of an epoxy polymer matrix and its composite (reinforced with IM7 Carbon fibers) was studied using a cationic photoinitiator. Photoinitiator concentration, dose, and process temperature were varied to understand their influence on E‐beam curing. Optimal photoinitiator concentration was found to be 5 phr. The curing was due to a primary α reaction with a strong dependence on dose, and a secondary β reaction with a weak dependence on dose and a strong dependence on initiator concentration. The extent of cure increased rapidly with dose until 100 kGy and it approached a plateau value beyond 100 kGy. This plateau value corresponded to incomplete curing by 27% for resin and 22% for composite at a process‐temperature of 22°C. The causes for incomplete curing appear to be the secondary β reaction and diffusional limitation. Increase in process temperature resulted in higher extent of cure at a dose level. The material used in this study was also found to be thermally curable and the reaction onset temperature (measured in a DSC ramp experiment) reduced from about 150°C at 0 kGy to about 50°C at 30 kGy. This indicates that simultaneous thermal curing during E‐beam curing of resin and composite is possible. After thermal post‐curing, the Tg of the E‐beam cured resin increased from 130°C at 200 kGy to a value greater than 370°C and the modulus decreased by 10%. The service temperature and the modulus of the 100% thermally cured resin and the thermally post‐cured (after E‐Beam irradiation) resin were comparable.  相似文献   

11.
The utilization of disposable chopsticks is very popular in Taiwan, China, and Japan and is one of the major sources of waste in these countries. In this study, recycled disposable chopstick fiber was chemically modified. Subsequently, this modified fiber and polypropylene‐graft‐maleic anhydride were added to polypropylene (PP) to form novel fiber‐reinforced green composites. A heat‐deflection temperature (HDT) test showed an increase of approximately 81% for PP with the addition of 60‐phr fibers, and the HDT of the composite could reach up to 144.8°C. In addition, the tensile strength, Young's modulus, and impact strength were 66, 160.3, and 97.1%, respectively, when the composite material was 40‐phr fibers. Furthermore, this type of reinforced PP would be more environmentally friendly than an artificial‐additive‐reinforced one. It could also effectively reduce and reuse the waste of disposable chopsticks and lower the costs of the materials. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
采用等温黏度实验和浇铸体力学性能测试来优选自制改性固化剂CUR–1的配比,通过不同升温速率下的固化过程差示扫描量热并对固化物进行傅立叶变换红外光谱分析,确定了体系的固化制度,研制出一种适用于发动机壳体或结构复杂的回转体类结构件的碳纤维湿法缠绕树脂基复合材料的中低温固化环氧树脂体系,用湿法缠绕工艺制作单向纤维缠绕成型复合材料环(NOL环)并进行了性能测试。结果表明:当CUR–1的含量为15份时,树脂体系具有适于湿法缠绕工艺的黏度和使用期,树脂可在80℃完全固化,同时浇铸体拉伸强度为84 MPa,拉伸弹性模量为3.8 GPa,断裂伸长率为5.4%,热变形温度为131℃。该树脂体系与纤维粘结性好,NOL环力学性能高,NOL环拉伸强度为2 451 MPa,拉伸弹性模量为146 GPa,层剪切强度为55 MPa。  相似文献   

13.
Composites of palm fibers and poly(propylene) (PP) were compounded in an extruder at 200°C. The composites were subsequently injection molded into standard tensile specimens for mechanical characterization. The fracture morphology of the specimens was analyzed by scanning electron microscopy. It was observed that the composite modulus increased with the increase of fiber content, indicating the existence of adhesion between PP and the much stiffer palm fibers. However, the adhesion was not satisfactory and resulted in a decrease in the composite tensile strength with fiber addition. The compatibilizer Epolene E‐43 was used to minimize this incompatibility between the wood fibers and the PP matrix. The maleated PP additive enhanced the fiber–matrix adhesion, resulting in an improvement in composite performance. Also, small fibers showed better mechanical properties than those of long fibers. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2581–2592, 2004  相似文献   

14.
The tensile properties: Young's modulus, ultimate tensile strength, ultimate elongation, the glass transition temperature, and the dynamic mechanical properties (dynamic shear modulus (G'), loss tangent (Tan δ)), of three epoxy resins (Epon 828, Epon 836, Epon HPT 1071) cured with the disulfide-containing crosslinking agent—4.4-dithiodianilme (DTDA) have been characterized. The results show that DTDA is a satisfactory crosslinking agent for the epoxide resins that have been studied as compared to the well-known curing agent methylene dianiline (MDA). There are no significant differences between the properties of Epon 828 cured with DTDA at stoichiometric ratio (2:1) and Epon 828 cured with DTDA at small amine excess ratio (1.75:1). The glass transition temperature of the cured tetrafunctional epoxy resin Epon HPT 1971 (235°C) is significantly higher than that of difunctional epoxy resins such as Epon 828 (Tg–175°C), but the product is too brittle to be used without plasticizer.  相似文献   

15.
This paper presents a feasible method for introducing crosslinkable groups into a polymer to achieve excellent chemical resistance and improved thermal stability. Here, 3,6‐bi(4‐fluorobenzenzoyl)‐N‐allylcarbazole, a novel allyl‐containing difluoroketone monomer, is synthesized and characterized. The resulting monomer is polymerized with phenolphthalein through the aromatic nucleophilic substitution reaction at 160 °C to provide the soluble poly(aryl ether ketone) (PAEK) with a pendant allyl group. The obtained PAEK is characterized using Fourier transform infrared spectroscopy, NMR and gel permeation chromatography. The crosslinking reaction of the polymer occurs at 270 °C, and it imparts excellent solvent resistance. DSC analysis shows that the glass transition temperature (Tg) of the cured polymer increases to 262–306 °C when the curing temperature is elevated or when the curing time is extended within certain limits. The rate of increase of Tg and the rate of the crosslinking reaction decrease as the curing time is extended under all of the investigated curing temperatures. The cured PAEKs possess good thermal stability with 5% weight loss temperatures up to 450 °C. The tensile strength and Young's modulus of the polymer film cured at 300 °C for 2 h are 65 MPa and 1.4 GPa, respectively. In addition, the polymer films before and after curing exhibit similar UV?visible absorption and blue light emission. © 2014 Society of Chemical Industry  相似文献   

16.
Long-fiber reinforced thermoplastic composites were made from 9 mm long glass fiber reinforced PP pellets by alternative procedures of roll-mill and hot-press molding. The severe problem of fiber breaking during the process could be avoided by this method. The average fiber length of this composite was ∼7 mm long. More than 80% of fibers in the composite were aligned within the 20° range. In the major fiber-oriented direction, at 25°C, the tensile strength of this composite was 205 MPa. At elevated temperatures in the range of 25°C to 125°C, the tensile strength was inversely proportional to the temperature. The two-parameter Weibull distribution function was used to simulate the strength distribution of the composite. Results showed that the strength distribution curve shifted from high to low as the temperature increased.  相似文献   

17.
In this preliminary study, micromechanical techniques were used to compare the interfacial properties of both carbon and glass fiber composites with two structurally different epoxy matrices (YD‐114 and YDF‐175) at ambient and relatively low temperatures (25°C and −10°C). Tensile modulus of elasticity for both epoxies was higher at lower temperature. Although both fibers exhibited more bimodality at lower temperature than at ambient temperature, glass fiber composites exhibited a statistically greater improvement in tensile strength. This may be attributed to differences in inherent flaws and rigidity. A decrement in stress was observed for YDF‐175 epoxy composites under cyclic loadings at both temperatures, which was attributed to lower interfacial shear strength (IFSS). In contrast to the IFSS of conventional YD‐114 epoxy composites, the IFSS of both the carbon and glass fibers/YDF‐175 epoxy composites studied was higher at the lower temperature. The microfailure pattern observed in microdroplet pullout tests was consistent with the other IFSS results. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

18.
The objective of this study is to determine the tensile, compressive, and shear properties of unidirectional glass/epoxy composite plates under room (∼20°C) and high (40, 60, 80, and 100°C) temperatures. Mechanical properties were determined according to the ASTM standards. A hot lamination press was used for fabrication of composite plates. For curing process, laminated plates were retained at a constant pressure (250 kPa) and 120°C during 2 h. And then, composite plate is cooled to room temperature at the same pressure. The fiber volume fraction of laminated composite plate is measured as 65%. Experimental results show that the mechanical properties (except for the transverse tensile strength) of glass/epoxy composites are reduced by increasing temperature. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

19.
This study addresses the effects of additives on the compressive strength of low‐temperature cured acrylic polymer concrete (PC). Three curing temperatures (0°C, ?10°C, and ?20°C) and five ages (6, 12, 24, 72, and 168 h) with two different types of additives [trimethylolpropane trimethacrylate (TMPTMA) and silane] were investigated. As a result, the compressive strength tended to decrease as the curing temperature decreased. The compressive strengths at 24 h were approximately 90% of those at 168 h at both curing temperatures of 0°C and ?20°C, indicating that the rate of early age strength development was quite high even at a very low curing temperature range. The results of two‐way variance analysis revealed that silane had a greater impact on the compressive strength than TMPTMA. About 13%–23% strength improvements with a 168‐h compressive strength of over 80 MPa could be obtained at ?20°C by adding silane. Furthermore, this study proposed optimum mixture proportions of acrylic PC that generate a working life of 50–70 minutes with a compressive strength of 80 MPa at subzero temperatures. The findings of this study are expected to be effectively used in field applications of acrylic PC, especially in the cold regions during winter season. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40939.  相似文献   

20.
Studies were made of the compressive strength and bending strength of mortars of standard composition. The period of initial curing was 1, 3 or 6 hours and the temperature of steam curing was 65°C and 80°C. The initial curing temperature was 5° or 20° or lowered from 20° to 5°C. The strength of mortar cooled in the course of initial curing showed larger strength than the specimens cured at 20°C and 5°C. The strength increase is related with the ill-crystallized hydrates and the homogenous distribution of pore size in cement paste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号