首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A perfluoroalkyl‐terminated multiarm star polymer (perfluoroalkyl‐terminated hyperbranched polyglycerol) was synthesized and characterized on the basis of perfluorooctanoyl chloride grafting on hyperbranched polyglycerol. The conductivity of a blend of the perfluoroalkyl‐terminated star polymer and linear poly(ether urethane) was studied. The results indicated that this blend had better solvating capability in salt and higher ionic conductivity. The conductivity of the blend was 2.5 × 10?4 S cm?1 at 60°C when the concentration of the perfluoroalkyl‐terminated hyperbranched polyglycerol was 30 wt % and the ethylene oxide (EO)/Li ratio was 4 in the blend. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 238–242, 2005  相似文献   

2.
Hyperbranched polymer was synthesized from pentaerythritol (as the central core), 1,2,4‐trimellitic anhydride, and epichlorohydrin, and then hyperbranched polymer electrolytes with terminal ionic groups were prepared by the reaction of hyperbranched polymer with N‐methyl imidazole. The chemical structure, thermal behavior, and ionic conductive property of the hyperbranched polymer electrolytes were investigated by 1H‐NMR, FTIR, differential scanning calorimetry, thermogravimetric analyzer, and complex impedance analysis, respectively. The ionic conductivity of hyperbranched polymer electrolyte was up to 2.4 × 10?4 S cm?1 at 30°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
BACKGROUND: Until recently, hyperbranched polymers were thought to be ill‐defined materials that were not useful as building blocks for well‐defined complex polymer architectures. It is a current challenge to develop strategies that offer rapid access to well‐defined hyperbranched block copolymers. RESULTS: A convenient three‐step protocol for the synthesis of double‐hydrophilic hyperbranched–linear–hyperbranched ABA‐type triblock copolymers based on poly(ethylene oxide) (PEO) and hyperbranched polyglycerol (hbPG) is presented. The Bola‐type polymers exhibiting an aliphatic polyether structure were prepared from a linear (lin) linPG‐b‐PEO‐b‐linPG precursor triblock. The materials exhibit low polydispersities (Mw/Mn) in the range 1.19–1.45. The molecular weights of the block copolymers range from 6300 to 26 200 g mol?1, varying in the length of both the linear PEO chain as well as the hbPG segments. Detailed characterization of the thermal properties using differential scanning calorimetry demonstrates nanophase segregation of the blocks. CONCLUSION: The first example of well‐defined ABA hyperbranched–linear–hyperbranched triblock copolymers with PEO middle block and hbPG A‐blocks is presented. The biocompatible nature of the aliphatic polyether blocks renders these materials interesting for biomedical purposes. These new materials are also intriguing with respect to their supramolecular order and biomineralization properties. Copyright © 2009 Society of Chemical Industry  相似文献   

4.
Low crosslinked copolymer of linear and hyperbranched polyurethane (CHPU) was prepared, and the ionic conductivities and thermal properties of the composite polymer electrolytes composed of CHPU and LiClO4 were investigated. The FTIR and Raman spectra analysis indicated that the polyurethane copolymer could dissolve more lithium salt than the corresponding polymer electrolytes of the non crosslinked hyperbranched polyurethane, and showed higher conductivities. At salt concentration EO/Li = 4, the electrolyte CHPU30‐LiClO4 reached its maximum conductivity, 1.51 × 10?5 S cm?1 at 25°C. DSC measurement was also used for the analysis of the thermal properties of polymer electrolytes. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3607–3613, 2007  相似文献   

5.
The interaction behavior of solid‐state polymer electrolytes composed of poly(ethylene oxide) (PEO)/novolac‐type phenolic resin and lithium perchlorate (LiClO4) was investigated in detail by DSC, FTIR, ac impedance, DEA, solid‐state NMR, and TGA. The hydrogen bonding between the hydroxyl group of phenolic and ether oxygen of the PEO results in higher basicity of the PEO. The higher basicity of the ether group can dissolve the lithium salts more easily and results in a greater fraction of “free” anions and thus higher ionic conductivity. DEA results demonstrated that addition of the phenolic increases the dielectric constant because of the partially negative charge on the ether group induced by the hydrogen bonding interaction between ether oxygen and the hydroxyl group. The study showed that the blend of PEO(100)/LiClO4(25)/phenolic(15) possesses the highest ionic conductivity (1.5 × 10?5 S cm?1) with dimensional stability. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1207–1216, 2004  相似文献   

6.
Hyperbranched poly(glycidol) alkali sulfate (SHPG‐M) was prepared based on hyperbranched poly(glycidol). Polyurethane–hyperbranched poly(glycidol) (PU–SHPG‐M) sulfate electrolyte is a kind of single ionic or cationic conducting polymer electrolyte. Such a single ionic polymer electrolyte can obviously reduce the polarization and has little decay of direct current (DC) conductivity. SHPG‐M was characterized by Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), atomic force microscopy (AFM) and impedance analysis. The optimum conductivity is ~3 × 10?6 S·cm?1, with 30–40% SHPG‐M in the polymer electrolyte at room temperature. The species of cation greatly effects the ionic conductivity of the polymer electrolyte; that is, σSHPG‐Li > σSHPG‐Na > σSHPG‐K, with same SHPG‐M content in the polymer electrolyte. The ionic conductivity increases with an increase of temperature, and the dependence of ionic conductivity on temperature fits the Arrhenius equation well. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1185–1190, 2003  相似文献   

7.
A new poly(propylene carbonate)/poly(ethylene oxide) (PEO/PPC) polymer electrolytes (PEs) have been developed by solution‐casting technique using biodegradable PPC and PEO. The morphology, structure, and thermal properties of the PEO/PPC polymer electrolytes were investigated by scanning electron microscopy, X‐ray diffraction, and differential scanning calorimetry methods. The ionic conductivity and the electrochemical stability window of the PEO/PPC polymer electrolytes were also measured. The results showed that the Tg and the crystallinity of PEO decrease, and consequently, the ionic conductivity increases because of the addition of amorphous PPC. The PEO/50%PPC/10%LiClO4 polymer electrolyte possesses good properties such as 6.83 × 10?5 S cm?1 of ionic conductivity at room temperature and 4.5 V of the electrochemical stability window. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
Solid polymer electrolytes comprising blends of poly(vinyl chloride) (PVC) and poly(methyl methacrylate) (PMMA) as host polymers and lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) as dopant salt were prepared by solution‐casting technique. The ionic conductivity and dielectric behavior were investigated by using AC‐impedance spectroscopy in the temperature range of 298–353 K. The highest ionic conductivity of (1.11 ± 0.09)×10?6 S cm?1 is obtained at room temperature. The temperature dependence of ionic conductivity plots showed that these polymer blend electrolytes obey Arrhenius behavior. Conductivity–frequency dependence, dielectric relaxation, and dielectric moduli formalism were also further discussed. Apart from that, the structural characteristic of the polymer blend electrolytes was characterized by means of horizontal attenuated total reflectance–Fourier transform infrared (HATR–FTIR) spectroscopy. HATR–FTIR spectra divulged the interaction between PMMA, PVC, and LiTFSI. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
To improve the electrochemical properties and enhance the mechanical strength of solid polymer electrolytes, series of composite polymer electrolytes (CPEs) were fabricated with hybrids of thermoplastic polyurethane (TPU) electrospun membrane, polyethylene oxide (PEO), SiO2 nanoparticles and lithium bis(trifluoromethane)sulfonamide (LiTFSI). The structure and properties of the CPEs were confirmed by SEM, XRD, DSC, TGA, electrochemical impedance spectroscopy and linear sweep voltammetry. The TPU electrospun membrane as the skeleton can improve the mechanical properties of the CPEs. In addition, SiO2 particles can suppress the crystallization of PEO. The results show that the TPU‐electrospun‐membrane‐supported PEO electrolyte with 5 wt% SiO2 and 20 wt% LiTFSI (TPU/PEO‐5%SiO2‐20%Li) presents an ionic conductivity of 6.1 × 10?4 S cm?1 at 60 °C with a high tensile strength of 25.6 MPa. The battery using TPU/PEO‐5%SiO2‐20%Li as solid electrolyte and LiFePO4 as cathode shows an attractive discharge capacity of 152, 150, 121, 75, 55 and 26 mA h g?1 at C‐rates of 0.2C, 0.5C, 1C, 2C, 3C and 5C, respectively. The discharge capacity of the cell remains 110 mA h g?1 after 100 cycles at 1C at 60 °C (with a capacity retention of 91%). All the results indicate that this CPE can be applied to all‐solid‐state rechargeable lithium batteries. © 2018 Society of Chemical Industry  相似文献   

10.
Plasticized solid polymer electrolytes (PSPEs) consisting of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend (50/50 wt%) based matrix with lithium tetrafluoroborate (LiBF4) as dopant ionic salt (10 wt%) and varied concentrations (x = 0, 5, 10 and 15 wt%) of ethylene carbonate (EC) as plasticizer have been prepared. Classical solution-cast (SC) and the ultrasonic assisted followed by microwave irradiated (US–MW) solution-cast methods have been used for the preparation of (PEO–PMMA)–LiBF4x wt% EC films, and the same have been hot–pressed to get their smooth surfaces. Dielectric relaxation spectroscopy (DRS) and X–ray diffraction (XRD) techniques have been employed to characterize the dielectric and electrical dispersions and the structural properties of the PSPE films, respectively. It has been observed that the ionic conductivity of these semicrystalline ion-dipolar complexes is governed by their dielectric permittivity and polymers chain segmental dynamics. The increase in ionic conductivity values with the increase of plasticizer concentration in the PSPEs also varies with the films’ preparation methods. The US–MW method prepared PSPE film containing 15 wt% EC has a maximum ionic conductivity (1.86 × 10?5 S cm?1) at room temperature, whereas, the films having low concentrations of EC exhibit the conductivity of the order of 10?6 S cm?1.  相似文献   

11.
Solvent-free polymer electrolytes are critical for improving the performance of electrochemical devices. With the aim of developing a new silicon-based polymer electrolyte that does not contain poly(ethylene oxide) or ionic-liquid moieties, we present the synthesis, spectroscopic, thermogravimetric, and electrochemical characterization of a polymer combining flexible polysiloxanes with polar silatrane moieties at their chain ends or at their pendant chain ends prepared via hydrosilylation. The polymers obtained readily dissolve lithium bis (trifluoromethylsulfonyl)amide (LiTFSA), whereas lithium trifluoromethylsulfonate (LiOTf) and lithium bis(oxalato)borate (LiBOB) exhibit lower solubility. The polysiloxane with silatrane chain ends show an ionic conductivity of about 10 ?6 S cm ?1 at ambient temperature, a wide electrochemical stability of 5.4 V, a high lithium-ion transference number of 0.70, and good long-time thermal stability up to 150 °C. The pendant-type polymers show lower ionic conductivity because of their high glass transition temperature. Despite their low conductivity, the solvent-free polymer/LiTFSA complexes might find application as binder materials.  相似文献   

12.
The potential of poly(ethylene oxide) (PEO) and 49% poly(methyl methacrylate) grafted natural rubber (MG49) as a polymer host in solid polymer electrolytes (SPE) was explored for electrochemical applications. PEO–MG49 SPEs with various weight percentages of lithium perchlorate salt (LiClO4) was prepared with the solution casting technique. Characterization by scanning electron microscopy, Fourier transform infrared spectroscopy, and impedance spectroscopy was done to investigate the effect of LiClO4 on the morphological properties, chemical interaction, and ionic conductivity behavior of PEO–MG49. Scanning electron microscopy analysis showed that the surface morphology of the sample underwent a change from rough to smooth with the addition of lithium salts. Infrared analysis showed that the interaction occurred in the polymer host between the oxygen atom from the ether group (C? O? C) and the Li+ cation from doping salts. The ionic conductivity value increased with the addition of salts because of the increase in charge carrier up to the optimum value. The highest ionic conductivity obtained was 8.0 × 10?6 S/cm at 15 wt % LiClO4. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
Silica nanoparticles bearing hyperbranched polyglycidol (hbP) grafts are synthesized and blended with poly(ethylene oxide) (PEO) for the fabrication of composite solid polymer electrolytes (SPEs) for enhancing Li-ion conductivity. Different batches of hbPs are prepared, namely, the 5th, 6th, and 7th with increasing molecular weights using cationic ring-opening polymerization and grafted the hbPs onto the silica nanoparticles using quaternization reaction. The effect of end functionalization of hbP-grafted silica nanoparticles with a nitrile functional group (CN–hbP–SiO2) on the ionic conductivity of the blends with PEO is further studied. High dipole moments indicate polar nature of nitriles and show high dielectric constants. Among all the hbPs, the 6th-batch CN–hbP–SiO2 nanoparticles exhibit better ionic conductivity on blending with PEO showing ionic conductivity of 2.3 × 10−3 S cm−1 at 80 °C. The blends show electrochemical stability up to 4.5 V versus lithium metal.  相似文献   

14.
Composite polymer electrolytes were prepared from PEO (polyethylene oxide), lithium perchlorate (LiClO4), and with three different dielectric reinforcements such as lead zirconium titanate (PZT)‐12000, barium titanate (BT)‐1000, and Alumina (Al2O3)‐6. Differential scanning calorimetry and X‐ray diffractometry were employed to reveal the crystalline nature of the electrolytes. The conductivity of the composite polymer electrolytes were measured by impedance spectrometry. Among the three systems, PZT reinforced composite exhibits maximum ionic conductivity of 2.9 × 10−5 S/cm at room temperature. The ionic conductivity of the polymer composites increases with increase in dielectric constant of the reinforcement. The composite with alumina reinforcement displayed strongly modified properties with very weak temperature dependence of conductivity. POLYM. COMPOS., 36:42–46, 2015. © 2014 Society of Plastics Engineers  相似文献   

15.
Hybrid polymer dry electrolytes comprised of poly(ethylene oxide) (PEO), polyacrylonitrile (PAN), and LiClO4 were investigated. The impedance spectroscopy showed that the effect of PAN on the ion conductivity of PEO‐based electrolytes depends on the concentration of lithium salt. When the mole ratio of lithium to oxygen is 0.062 (15%LiClO4‐PEO), adding PAN will increase the ionic conductivity. Differential scanning calorimetry, NMR, and IR data suggested that the enhanced conductivity was due to both the decreasing of the PEO crystallinity and increasing of the degree of ionization of lithium salt. There was obviously no interaction between PAN and lithium ions, and PAN acts as a reinforcing filler, and hence contributes to the mechanical strength besides reducing the crystallinity of the polymer electrolytes. When the LiClO4‐PEO‐PAN hybrid polymer electrolyte was heated at 200°C under N2, PAN crosslinked partially, which further decreased the crystallinity of PEO and increased the ionic conductivity, and at the same time prevented the recrystallization of PEO upon sitting at ambient environment. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1530–1540, 2006  相似文献   

16.
In this study, solvent‐free nanofibrous electrolytes were fabricated through an electrospinning method. Polyethylene oxide (PEO), lithium perchlorate and ethylene carbonate were used as polymer matrix, salt and plasticizer respectively in the electrolyte structures. Keggin‐type hetero polyoxometalate (Cu‐POM@Ru‐rGO, Ni‐POM@Ru‐rGO and Co‐POM@Ru‐rGO (POM, polyoxometalate; rGO, reduced graphene oxide)) nanoparticles were synthesized and inserted into the PEO‐based nanofibrous electrolytes. TEM and SEM analyses were carried out for further evaluation of the synthesized filler structures and the electrospun nanofibre morphologies. The fractions of free ions and crystalline phases of the as‐spun electrolytes were estimated by obtaining Fourier transform infrared and XRD spectra, respectively. The results showed a significant improvement in the ionic conductivity of the nanofibrous electrolytes by increasing filler concentrations. The highest ionic conductivity of 0.28 mS cm?1 was obtained by the introduction of 0.49 wt% Co‐POM@Ru‐rGO into the electrospun electrolyte at ambient temperature. Compared with solution‐cast polymeric electrolytes, the electrospun electrolytes present superior ionic conductivity. Moreover, the cycle stability of the as‐spun electrolytes was clearly improved by the addition of fillers. Furthermore, the mechanical strength was enhanced with the insertion of 0.07 wt% fillers to the electrospun electrolytes. The results implied that the prepared nanofibres are good candidates as solvent‐free electrolytes for lithium ion batteries. © 2020 Society of Chemical Industry  相似文献   

17.
Two polar polymers with different dielectric constants, poly(vinylidene fluoride) (PVDF) and poly(ethylene oxide) (PEO), were each blended with a chlorine-terminated poly(ethylene ether) (PEC) and one of the two salts, LiBF4 and LiCF3CO2, to form PEC plasticized polymer electrolytes. The room-temperature ionic conductivity of the PEC plasticized polymer electrolytes reached a value as high as 10?4 S/cm. The room-temperature ionic conductivity of the PVDF-based polymer electrolytes displayed a stronger dependence on the PEC content than did the PEO-based polymer electrolytes. In PVDF/PEC/LiBF4 polymer electrolytes, the dynamic ionic conductivity was less dependent on temperature and more dependent on the PEC content than it was in PEO/PEC/LiBF4 polymer electrolytes. The highly plasticized PVDF-based polymer electrolyte film with a PEC content greater than CF4 (CF4 defined as the molar ratio of the repeat units of PEC to those of PVDF equal to 4) was self-supported and nonsticky, while the corresponding PEO-based polymer electrolyte film was sticky. In these highly plasticized PVDF-based polymer electrolytes, the curves of the room-temperature ionic conductivity vs. the salt concentration were convex because the number of carrier ions and the chain rigidity both increased with increase of the salt content. The maximum ionic conductivity at 30°C was independent of the PEC content, but it depended on the anion species of the lithium salts in these highly plasticized polymer electrolytes. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
The transparent and flexible solid polymer electrolytes (SPEs) were fabricated from polyacrylonitrile‐polyethylene oxide (PAN‐PEO) copolymer which was synthesized by methacrylate‐headed PEO macromonomer and acrylonitrile. The formation of copolymer is confirmed by Fourier‐transform infrared spectroscopy (FTIR) measurements. The ionic conductivity was measured by alternating current (AC) impedance spectroscopy. Ionic conductivity of PAN‐PEO‐LiClO4 complexes was investigated with various salt concentration, temperatures and molecular weight of PEO (Mn). And the maximum ionic conductivity at room temperature was measured to be 3.54 × 10?4 S/cm with an [Li+]/[EO] mole ratio of about 0.1. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 461–464, 2006  相似文献   

19.
The polymer electrolytes based on a polymerized ionic liquid (PIL) as polymer host and containing 1,2‐dimethyl‐3‐butylimidazolium bis(trifluoromethanesulfonyl)imide (BMMIM‐TFSI) ionic liquid, lithium TFSI salt, and nanosilica are prepared. The PIL electrolyte presents a high ionic conductivity, and it is 1.07 × 10?3 S cm?1 at 60°C, when the BMMIM‐TFSI content reaches 60% (the weight ratio of BMMIM‐TFSI/PIL). Furthermore, the electrolyte exhibits wide electrochemical stability window and good lithium stripping/plating performance. Preliminary battery tests show that Li/LiFePO4 cells with the PIL electrolytes are capable to deliver above 146 mAh g?1 at 60°C with very good capacity retention. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40928.  相似文献   

20.
Graphene oxide (GO) has been prepared by modified Hummer's method for their incorporation as nanofiller in designing nanocomposite polymer electrolytes (NCPEs). Prior to use the GO nanofillers has been characterized by TEM, FTIR, and Raman studies to elucidate their nanostructure, functionality, and purity. The various poly(ethylene oxide) (PEO)‐based NCPEs has been prepared by incorporating GO nanofillers in presence of three different lithium salts, viz., CF3SO3Li, LiTFSI, and LiNO3 as the source of Li‐ions and then casted into free standing polymeric films. The change in PEO crystallinity has been studied considering their full width half maximum values of respective diffraction peaks in the XRD spectra. The Li‐ion conductivity of various NCPEs has been studied from impedance spectroscopy. All the NCPE films show optimum value of Li‐ion conductivity with 0.3% GO nanofiller content irrespective of the source of Li‐ions used. But, variation of the Li‐ion conductivity values is occurred for all the three studied lithium salts. Both LiTFSI and LiNO3 salts display Li‐ion conductivity in the order of 10?4 S cm?1 whereas CF3SO3Li in the order of 10?6 S cm?1, all in presence of 0.3% GO nanofillers. The change in conductivity values of the NCPEs has been explained by correlating with Argand plots and also with change in PEO crystallinity, which occurs due to various relaxation processes. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46336.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号