首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Robust finite‐time stability and stabilization problems for a class of linear uncertain time‐delay systems are studied. The concept of finite‐time stability is extended to linear uncertain time‐delay systems. Based on the Lyapunov method and properties of matrix inequalities, a sufficient condition that ensures finite‐time stability of linear uncertain time‐delay systems is given. By virtue of the results on finite‐time stability, a memoryless state feedback controller that guarantees that the closed‐loop system is finite time stable, is proposed. The controller design problem is solved by using the linear matrix inequalities and the cone complementarity linearization iterative algorithm. Numerical examples verify the efficiency of the proposed methods.  相似文献   

2.
This paper is concerned with the finite‐time guaranteed cost control problem for stochastic Markovian jump systems with incomplete transition rates. By a mode‐dependent approach (MDA), several new sufficient conditions for the existence of state and output feedback finite‐time guaranteed cost controllers are provided, and the upper bound of cost function is more accurately expressed. Moreover, these results' superiorities are analyzed and shown. A new N‐mode optimization algorithm is given to minimize the upper bound of cost function. Finally, a detailed example is utilized to demonstrate the merit of the proposed results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This paper considers the problem of global finite‐time stabilization in probability for stochastic high‐order nonlinear systems in which the power order is greater than or equal to one and the drift and diffusion terms satisfy weaker growth conditions. Based on stochastic Lyapunov theorem on finite‐time stability, via the combined adding one power integrator and sign function method, constructing a Lyapunov function and verifying the existence and uniqueness of solution, a continuous state feedback controller is designed to guarantee the closed‐loop system globally finite‐time stable in probability.  相似文献   

4.
In this paper, a finite‐time stability procedure is suggested for a class of Caputo‐Katugampola fractional‐order time delay systems. Sufficient conditions are derived to prove this fact. Numerical results are provided to demonstrate the validity of our theoretical results.  相似文献   

5.
This paper mainly studies the notions of detectability and observability for discrete‐time stochastic Markov jump systems with state‐dependent noise. Two concepts, called “W‐detectability” and “W‐observability,” for such systems are introduced, and are shown to coincide with the other concepts on detectability and observability reported recently in literature. Moreover, some criteria and interesting properties for both W‐detectability and W‐observability are obtained.  相似文献   

6.
In this note, we deal with the exponential stability and stabilization problems for quadratic discrete‐time systems with time delay. By using the quadratic Lyapunov function and a so called ‘Finsler's lemma', delay‐independent sufficient conditions for local stability and stabilization for quadratic discrete‐time systems with time delay are derived in terms of linear matrix inequalities (LMIs). Based on these sufficient conditions, iterative linear matrix inequality algorithms are proposed for maximizing the stability regions of the systems. Finally, two examples are given to illustrate the effectiveness of the methods presented in this paper.  相似文献   

7.
The stability analysis problem is considered for linear discrete‐time systems with time‐varying delays. A novel summation inequality is proposed, which takes the double summation information of the system state into consideration. The inequality relaxes the recently proposed discrete Wirtinger inequality and its improved version. Based on construction of a suitable Lyapunov‐Krasovskii functional and the novel summation inequality, an improved delay‐dependent stability criterion for asymptotic stability of the systems is derived in terms of linear matrix inequalities. Numerical examples are given to demonstrate the advantages of the proposed method.  相似文献   

8.
This paper focuses on the problems of asymptotic stability and finite‐time stability (FTS) analysis, along with the state feedback controller design for networked control systems (NCSs) with consideration of both network‐induced delay and packet dropout. The closed‐loop NCS is modeled as a discrete‐time linear system with a time‐varying, bounded state delay. Sufficient conditions for the asymptotic stability and the FTS of the closed‐loop NCS are provided, respectively. Based on the stability analysis results, a mixed controller design method, which guarantees the asymptotic stability of the closed‐loop NCS in the usual case and the FTS of the closed‐loop NCS in the unusual case (that is, in some particular time intervals, large state delay occurs), is presented. A numerical example is provided to illustrate the effectiveness of the proposed mixed controller design method.  相似文献   

9.
This paper investigates the stochastic stability and stabilization for a class of singular stochastic systems of Itô‐type with Markovian switching, the transition rates (TRs) in the jumping processes are uncertain. The aims are to establish sufficient conditions to ensure the considered system to be stochastically stable in the mean square sense, which is supported by a detailed proof of existence and uniqueness of the system solution, and to propose a controller such that the system can be stabilizable. The controller is first proposed and has advantage over traditional ones, the controller gain matrices are obtained by solving a strict linear matrix inequality (LMI). Finally, a numerical example is provided to illustrate the validity of the obtained methodology.  相似文献   

10.
In this paper, the stabilization of stochastic coupled systems (SCSs) with time delay via feedback control based on discrete‐time state observations is investigated. We use the discrete‐time state feedback control to stabilize stochastic coupled systems with time delay. Moreover, by employing Lyapunov method and graph theory, the upper bound of the duration between two consecutive state observations is obtained and some criteria are established to guarantee the stabilization in sense of ‐stability and mean‐square asymptotic stability of SCSs with time delay via feedback control based on discrete‐time state observations. In addition, to verify the theoretical results, stochastic coupled oscillators with time delay are performed. At last, a numerical example is given to illustrate the applicability and effectiveness of our analytical results.  相似文献   

11.
This paper develops a novel finite‐time control design for linear systems subject to time‐varying delay and bounded control. Based on the Lyapunov‐like functional method and using a result on bounding estimation of integral inequality, we provide some sufficient conditions for designing state feedback controllers that guarantee the robust finite‐time stabilization with guaranteed cost control. The conditions are obtained in terms of linear matrix inequalities (LMIs), which can be determined by utilizing the MATLAB LMI Control Toolbox. A numerical example is given to show the effectiveness of the proposed method.  相似文献   

12.
Semi‐Markovian jump systems are more general than Markovian jump systems in modeling practical systems. On the other hand, the finite‐time stochastic stability is also more effective than stochastic stability in practical systems. This paper focuses on the finite‐time stochastic stability, exponential stochastic stability, and stabilization of semi‐Markovian jump systems with time‐varying delay. First, a new stability condition is presented to guarantee the finite‐time stochastic stability of the system by using a new Lyapunov‐Krasovskii functional combined with Wirtinger‐based integral inequality. Second, the stability criterion is further proved to guarantee the exponential stochastic stability of the system. Moreover, a controller design method is also presented according to the stability criterion. Finally, an example is provided to illustrate that the proposed stability condition is less conservative than other existing results. Additionally, we use the proposed method to design a controller for a load frequency control system to illustrate the effectiveness of the method in a practical system of the proposed method.  相似文献   

13.
In this study, a novel robust finite‐time stability controller is proposed for a class of high‐order uncertain nonlinear systems. It uses the dynamic surface control (DSC) approach to simplify the traditional backstepping design for high‐order nonlinear systems, thus avoiding the “explosion of terms”. The finite‐time stability of the closed‐loop system is guaranteed to have high performance, such as fast transient and strong robustness to dynamic uncertainties, and the tracking error is made arbitrarily small. Simulation results of two examples indicate that the proposed controller is effective.  相似文献   

14.
This paper describes a variable structure control for fractional‐order systems with delay in both the input and state variables. The proposed method includes a fractional‐order state predictor to eliminate the input delay. The resulting state‐delay system is controlled through a sliding mode approach where the controller uses a sliding surface defined by fractional order integral. Then, the proposed control law ensures that the state trajectories reach the sliding surface in finite time. Based on recent results of Lyapunov stability theory for fractional‐order systems, the stability of the closed loop is studied. Finally, an illustrative example is given to show the interest of the proposed approach.  相似文献   

15.
This paper investigates the finite‐time stabilization problem for a class of cascade nonlinear switched systems. Using the average dwell time and multiple Lyapunov function technologies, some sufficient conditions to guarantee that the corresponding closed‐loop system is finite‐time stabilized are derived for the switched systems. Via multiple Lyapunov functions, the state feedback controller is designed to finite‐time stabilize a cascade nonlinear switched system, and the conditions are formulated in terms of linear matrix inequalities. An example is given to illustrate the efficiency of the proposed methods.  相似文献   

16.
In this paper, the exponential stability problem is investigated for a class of discrete‐time singular switched systems with time‐varying delay. By using a new Lyapunov functional and average dwell time scheme, a delay‐dependent sufficient condition is established in terms of linear matrix inequalities for the considered system to be regular, causal, and exponentially stable. Different from the existing results, in the considered systems the corresponding singular matrices do not need to have the same rank. A numerical example is given to demonstrate the effectiveness of the proposed result.  相似文献   

17.
This paper is concerned with the problem of delay‐dependent passive analysis and control for stochastic interval systems with interval time‐varying delay. The system matrices are assumed to be uncertain within given intervals, and the time delay is a time‐varying continuous function belonging to a given range. By the transformation of the interval uncertainty into the norm‐bounded uncertainty, partitioning the delay into two segments of equal length, and constructing an appropriate Lyapunov–Krasovskii functional in each segment of the delay interval, delay‐dependent stochastic passive control criteria are proposed without ignoring any useful terms by considering the information of the lower bound and upper bound for the time delay. The main contribution of this paper is that a tighter upper bound of the stochastic differential of Lyapunov–Krasovskii functional is obtained via a newly‐proposed bounding condition. Based on the criteria obtained, a delay‐dependent passive controller is presented. The results are formulated in terms of linear matrix inequalities. Numerical examples are given to demonstrate the effectiveness of the method.  相似文献   

18.
In this paper, a new approach for stability analysis of time‐dependent switched linear systems is proposed. System equivalence is the main idea in this new approach, which derives a switched discrete linear parameter‐varying system from the switched continuous‐time linear switched system with interval dwell time, and the stability properties of the two corresponding systems are proved to be equivalent. Then, by applying a quadratic Lyapunov function approach for the equivalent switched discrete system, the stability of the switched continuous‐time linear system can be established without checking any average dwell time condition. Finally the computation complexity is analyzed, and mode incidence matrix is introduced to reduce the computation cost.  相似文献   

19.
This paper focuses on the problems of robust stability and stabilization and robust control for uncertain singular Markovian jump systems with (x,v)‐dependent noise. The parameter uncertainties appearing in state, input, disturbance as well as diffusion terms are assumed to be time‐varying but norm‐bounded. Based on the approach of generalized quadratic stability, the memoryless state feedback controller is designed for the robust stabilization problem, which ensures that the resulting closed‐loop system has an impulse‐free solution and is asymptotically stable in the mean square. Furthermore, the results of robust control problem are derived. The desired state feedback controller is presented, which not only meets the requirement of robust stabilization but also satisfies a prescribed performance level. The obtained results are formulated in terms of strict LMIs. What we have obtained can be viewed as corresponding extensions of existing results on uncertain singular systems. A numerical example is finally given to demonstrate the application of the proposed method.  相似文献   

20.
This paper investigates the finite‐time control problem for a class of stochastic nonlinear systems with stochastic integral input‐to‐state stablility (SiISS) inverse dynamics. Motivated by finite‐time stochastic input‐to‐state stability and the concept of SiISS using Lyapunov functions, a novel finite‐time SiISS using Lyapunov functions is introduced firstly. Then, by adopting this novel finite‐time SiISS small‐gain arguments, using the backstepping technique and stochastic finite‐time stability theory, a systematic design and analysis algorithm is proposed. Given the control laws that guarantee global stability in probability or asymptotic stability in probability, our design algorithm presents a state‐feedback controller that can ensure the solution of the closed‐loop system to be finite‐time stable in probability. Finally, a simulation example is given to demonstrate the effectiveness of the proposed control scheme. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号