首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Halogen‐free flame‐retarded blends composed of 2,2‐bis[4‐(3,4‐dicyanophenoxy) phenyl] propane (BAPh) and epoxy resin E‐44 (EP) were successfully prepared with 4,4′‐diaminodiphenyl sulfone as a curing additive. The structure of the copolymers was characterized by Fourier transform infrared spectroscopy, which showed that epoxy groups, a phthalocyanine ring, and a triazine ring existed. The limiting oxygen index values were over 30, and the UL‐94 rating reached V‐0 for the 20 : 80 (w/w) BAPh/EP copolymers. Differential scanning calorimetry and dynamic rheological analysis were employed to study the curing reaction behaviors of the phthalonitrile/epoxy blends. Also, the gelation time was shortened to 3 min when the prepolymerization temperature was 190°C. Thermogravimetric analysis showed that the thermal decomposition of the phthalonitrile/epoxy copolymers significantly improved with increasing BAPh content. The flexible strength of the 20:80 copolymers reached 149.5 MPa, which enhanced by 40 MPa compared to pure EP. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
A series of bisphenol A (BPA)‐based 2,2‐bis‐[4‐(3,4‐dicyanophenoxy)phenyl]propane (BAPh) prepolymers and polymers were prepared using BPA as a novel curing agent. Ultraviolet–visible and Fourier transform infrared spectroscopy spectrum were used to study the polymerization reaction mechanism of the BAPh/BPA polymers. The curing behaviors were studied by differential scanning calorimetry and dynamic rheological analysis, the results indicated that the BAPh/BPA prepolymers exhibit large processing windows (109.5–148.5°C) and low complex viscosity (0.1–1 Pa·s) at moderate temperature, respectively. Additionally, the BAPh/BPA/glass fiber (GF) composite laminates were manufactured and investigated. The flexural strength and modulus of the composite laminates are 548.7–632.8 MPa and 25.7–33.2 GPa, respectively. The thermal stabilities of BAPh/BPA/GF composite laminates were studied by thermogravimetry analysis. The temperatures at 5% weight loss (T5%) of the composite laminates are 508.5–528.7°C in nitrogen and 508.1–543.2°C in air. In conclusion, the BAPh/BPA systems can be used as superior matrix materials for numerous advanced composite applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
Bisphthalonitrile (BAPh)/polyarylene ether nitrile end‐capped with hydroxyl groups (PEN‐OH) composite laminates reinforced with glass fiber (GF) have been fabricated in this article. The curing behaviors of BAPh/PEN‐OH prepolymers have been characterized by differential scanning calorimetry and dynamic rheological analysis. The results indicate that with the introduction of PEN‐OH the curing temperature of BAPh has decreased to 229.6–234.8°C and BAPh/PEN‐OH prepolymers exhibit large processing windows with relatively low melt viscosity. The BAPh/PEN‐OH/GF composite laminates exhibit tensile strength (272.4–456.5 MPa) and modulus (4.9–10.0 GPa), flexural strength (507.1–560.9 MPa), and flexural modulus (24.0–30.4 GPa) with high thermal (stable up to 538.3°C) and thermal stabilities (stable up to 475.5°C). The dielectric properties of BAPh/PEN‐OH/GF composite laminates have also been investigated, which had little dependence on the frequency. Meanwhile, scanning electron microscopy results show that the BAPh/PEN‐OH/GF composite laminates display excellent interfacial adhesions between the matrix and GFs. Herein, the BAPh/PEN‐OH matrix can be a good matrix for high‐performance polymeric materials and the advanced BAPh/PEN‐OH/GF composite laminates can be used under high temperature environment. POLYM. COMPOS., 34:2160–2168, 2013. © 2013 Society of Plastics Engineers  相似文献   

4.
Poly(etherimide)s (PEIs) with different chemical structures were synthesized and characterized, which were employed to toughen epoxy resins (EP/PEI) and carbon fiber‐reinforced epoxy composites (CF/EP/PEI). Experimental results revealed that the introduction of the fluorinated groups and meta linkages could help to improve the melt processability of EP/PEI resins. The EP/PEI resins showed obviously improved mechanical properties including tensile strength of 89.2 MPa, elongation at break of 4.7% and flexural strength of 144.2 MPa, and good thermal properties including glass transition temperature (Tg) of 211°C and initial decomposition temperature (Td) of 366°C. Moreover, CF/EP/PEI‐1 and CF/EP/PEI‐4 composites showed significantly improved toughness with impact toughness of 13.8 and 15.5 J/cm2, respectively. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Bisphthalonitrile (BAPh) monomer was blended with novolac resins to achieve good processing resin blends. The curing behaviors of the novolac/BAPh (novolac/BAPh) blends were studied by differential scanning calorimetry (DSC) and dynamic rheological analysis. The results indicated that the blends had large processing windows (98–118°C), and they can copolymerize without any other curing additives. The novolac/BAPh copolymers were obtained by short curing times and low curing temperatures. Thermal and thermal-oxidative stabilities of the copolymers were investigated by thermal gravimetric analysis, and the char yields up to 74 and 35% by weight at 800°C were achieved under nitrogen and air atmosphere, respectively. These postcured copolymers exhibited a 5% weight loss temperature of 502°C in air. These results revealed that the copolymers exhibited excellent thermal and thermal-oxidative stabilities. Dynamic mechanical properties of the copolymers were systematically evaluated by dynamic mechanical analysis. The copolymers exhibited higher glass transition temperatures (Tg) as the BAPh content increased. Mechanical properties of the copolymers were investigated, and these data showed that flexural strength and flexural modulus of the 50 : 50 novolac/BAPh copolymers were 91 MPa and 5.78 GPa, respectively. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
A polymer‐based thermal conductive composite has been developed. It is based on a dispersion of micro‐ and nanosized alumina (Al2O3) in the phthalonitrile‐terminated poly (arylene ether nitriles) (PEN‐t‐ph) via solution casting method. The Al2O3 with different particle sizes were functionalized with phthalocyanine (Pc) which was used as coupling agent to improve the compatibility of Al2O3 and PEN‐t‐ph matrix. The content of microsized functionalized Al2O3 (m‐f‐Al2O3) maintained at 30 wt % to form the main thermally conductive path in the composites, and the nanosized functionalized Al2O3 (n‐f‐Al2O3) act as connection role to provide additional channels for the heat flow. The thermal conductivity of the f‐Al2O3/PEN‐t‐ph composites were investigated as a function of n‐f‐Al2O3 loading. Also, a remarkable improvement of the thermal conductivity from 0.206 to 0.467 W/mK was achieved at 30 wt % n‐f‐Al2O3 loading, which is nearly 2.7‐fold higher than that of pure PEN‐t‐ph polymer. Furthermore, the mechanical testing reveals that the tensile strength increased from 99 MPa for pure PEN‐t‐ph to 105 MPa for composites with 30 wt % m‐f‐Al2O3 filler loading. In addition, the PEN‐t‐ph composites possess excellent thermal properties with glass transition temperature (Tg) above 184°C, and initial degradation temperature (Tid) over 490°C. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41595.  相似文献   

7.
Glycerol polyglycidyl ether (GPE) and polyglycerol polyglycidyl ether (PGPE) were cured with ε‐poly(L ‐lysine) (PL) using epoxy/amine ratios of 1 : 1 and 2 : 1 to create bio‐based epoxy cross‐linked resins. When PGPE was used as an epoxy resin and the epoxy/amine ratio was 1 : 1, the cured neat resin showed the greatest glass transition temperature (Tg), as measured by differential scanning calorimetry. Next, the mixture of PGPE, PL, and montomorillonite (MMT) at an epoxy/amine ratio of 1 : 1 in water was dried and cured finally at 110°C to create PGPE‐PL/MMT composites. The X‐ray diffraction and transmission electron microscopy measurements revealed that the composites with MMT content 7–15 wt % were exfoliated nanocomposites and the composite with MMT content 20 wt % was an intercalated nanocomposite. The Tg and storage modulus at 50–100°C for the PGPE‐PL/MMT composites measured by DMA increased with increasing MMT content until 15 wt % and decreased at 20 wt %. The tensile strength and modulus of the PGPE‐PL/MMT composites (MMT content 15 wt %: 42 and 5300 MPa) were much greater than those of the cured PGPE‐PL resin (4 and 6 MPa). Aerobic biodegradability of the PGPE‐PL in an aqueous medium was ~ 4% after 90 days, and the PGPE‐PL/MMT nanocomposites with MMT content 7–15 wt % showed lower biodegradability. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
In this study, polymer hybrid composites were synthesized by sol‐gel process. 3‐Amino‐propyltrimethoxysilane [APTMS)/γ‐Glycidoxypropyl trimethoxy‐silane (GPTMS); (4, 4′‐Methylene‐dianiline (DDM)] and 1,4‐Bis(trimethoxysilylethyl) benzene (BTB) were added to DGEBA type epoxy resin for anticipated to exhibit excellent thermal stability. Boron trifluoride monoethylamine (BF3MEA) was used as catalyst. The structure of nanocomposites was characterized by attenuated total reflectance (ATR) and solid‐state 29Si NMR which suggest EP‐APTMS‐BTB/EP‐GPTMS‐BTB possesses T3; T1–T0, and T1 structures when the BTB content was lower than 10 wt % and higher 20 wt %, respectively. BF3MEA was proved to be an effective catalyst for the sol‐gel reaction of APTMS, but it could not promote for GPTMS. From TEM microphotographs, EP‐APTMS‐BTB (10 wt %) possesses a dense inorganic structure (particle size around 5–15 nm) compare with the loose inorganic structure of EP‐GPTM‐/BTB (10 wt %). DSC, TGA were use to analyze the thermal properties of the nanocomposites and DMA was used to analyze the dynamic mechanical properties of hybrid composites. The Tgs of all nanocomposites decreased with the increasing BTB content. A system with BTB content lower than 10 wt % showed good dynamic mechanical property and thermal stability (Td5 increased from 336°C to 371°C, char yield increased from 27.4 to 30.2%). The structure of inorganic network affects the Td5 and dynamic mechanical properties of composite. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40984.  相似文献   

9.
Liquid oxidized poly(1,2‐butadiene) (LOPB) with multi epoxy groups is synthesized to modify diglycidyl end‐caped poly(bisphenol A‐co‐epichlorohydrin) (DGEBA) cured by 4,4′‐diaminodiphenyl sulfone (DDS). FTIR spectra shows that DGEBA and LOPB can be effectively cured by DDS, and the epoxide rubber particles are evenly distributed in the composites till their addition up to 20 wt % of DGEBA as seen from the scanning electron microscope (SEM). Their decomposition temperatures (Td) increase with the increase in LOPB addition at around 10 wt % of DGEBA while the Td for the composite containing 20 wt % LOPB of DGEBA is lower than that of the neat epoxy. The addition of LOPB improves their storage moduli and especially these values at temperatures higher above 150 °C; all the composites exhibit higher glass transition temperature (Tg) than that of the neat epoxy, and the maximum Tg reaches up to 255 °C for the composite containing 15 wt % LOPB of DGEBA. The incorporation of LOPB effectively decreases their dielectric constants and the composite with 10 wt % LOPB of DGEBA possesses the lowest one. The synergic improvements in their various properties are attributed to the networks formation via covalent linkage between the two phases in these reactive blends. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44689.  相似文献   

10.
Multiwalled carbon nanotube (MWCNT)/epoxy composites are prepared, and the characteristics and morphological properties are studied. Scanning electron microscopy microphotographs show that MWCNTs are dispersed on the nanoscale in the epoxy resin. The glass‐transition temperature (Tg) of MWCNT/epoxy composites is dramatically increased with the addition of 0.5 wt % MWCNT. The Tg increases from 167°C for neat epoxy to 189°C for 0.5 wt % CNT/epoxy. The surface resistivity and bulk resistivity are decreased when MWCNT is added to the epoxy resins. The surface resistivity of CNT/epoxy composites decreases from 4.92 × 1012 Ω for neat epoxy to 3.03 × 109 Ω for 1 wt % MWCNT/epoxy. The bulk resistivity decreases from 8.21 × 1016 Ω cm for neat epoxy to 6.72 × 108 Ω cm for 1 wt % MWCNT/epoxy. The dielectric constant increases from 3.5 for neat epoxy to 5.5 for 1 wt % MWCNT/epoxy. However, the coefficient of thermal expansion is not affected when the MWCNT content is less than 0.5 wt %. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1272–1278, 2007  相似文献   

11.
In this study, the gallic acid‐based epoxy resin (GA‐ER) and alkali‐catalysed biphenyl‐4,4′‐diol formaldehyde resin (BPFR) are synthesized. Glass fibre‐reinforced GA‐ER/BPFR composites are prepared. Graphene oxide (GO) is used to improve the mechanical and thermal properties of GA‐ER/BPFR composites. Dynamic mechanical properties and thermal, mechanical, and electrical properties of the composites with different GO content are characterized. The results demonstrate that GO can enhance the mechanical and thermal properties of the composites. The glass transition temperature, Tg, of the BPFR/GA‐ER/GO composites is 20.7°C higher than the pure resin system, and the 5% weight loss temperature, Td5, is enhanced approximately 56.6°C. When the BPFR: GA‐ER mass ratio is at 4 : 6 and GO content is 1.0–1.2 wt %, the tensile and impact strengths of composites are 60.97 MPa and 32.08 kJ/m2 higher than the pure resin composites, respectively. BPFR/GA‐ER composites have better mechanical properties, and can replace common BPA epoxy resins in the fabrication of composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42637.  相似文献   

12.
To develop high performances of polymer composite laminates, differential scanning calorimetry and dynamic rheological analysis studies were conducted to show curing behaviors of 3‐aminophenoxyphthalonitrile/epoxy resin (3‐APN/EP) matrix and define cure parameters of manufacturing processes. Glass fiber reinforced 3‐APN/EP (GF/3‐APN/EP) composite laminates were successfully prepared through different processing conditions with three parameters such as pressures, temperatures, and time. Based on flexure tests, dynamic mechanical analysis, thermal gravimetric analysis, and scanning electron microscope, the complementary catalytic effect of the three processing parameters is investigated by studying mechanical behavior, thermomechanical behavior, thermal behavior, and fracture morphology of GF/3‐APN/EP laminates. The 50/50 GF/3‐APN/EP laminates showed a significant improvement in flexural strength, glass transition temperature (Tg), and thermal stability with favorable processing parameters. It was also found that the Tg and thermal stability were significantly improved by the postheated treatment method. The effect of manufacturing process provides a new and simple route for the polymer–matrix composites application, which indicates that the composites can be manufactured at low temperatures. But, they can be used in a high temperature environment. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39746.  相似文献   

13.
Bis(4‐cyanato‐3,5‐dimethylphenyl)anisylmethane was prepared by treating CNBr with bis(4‐hydroxy‐3,5‐dimethylphenyl)anisylmethane and blended with commercial epoxy resin in different ratios and cured at 120°C for 2 h, 180°C for 1 h, and postcured at 220°C for 1 h using diamino diphenyl methane as curing agent. Castings of neat resin and blends were prepared and characterized. The composite laminates were also fabricated with glass fiber using the same composition. The tensile strength of the composites increased with increase in cyanate content (3, 6, and 9%) from 322 to 355 MPa. The fracture toughness values also increased from 0.7671 kJ/m2, for neat epoxy resin, to 0.8615 kJ/m2, for 9% cyanate ester‐modified epoxy system. The 10% weight loss temperature of pure epoxy (358°C) was increased to 390°C by the incorporation of cyanate ester resin. The incorporation of cyanate ester up to 9% in the epoxy resin increases the Tg from 143 to 147°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Industrial hemp fibers were treated with a 5 wt % NaOH, 2 wt % Na2SO3 solution at 120°C for 60 min to remove noncellulosic fiber components. Analysis of fibers by lignin analysis, scanning electron microscopy (SEM), zeta potential, Fourier transform infrared (FTIR) spectroscopy, wide angle X‐ray diffraction (WAXRD) and differential thermal/thermogravimetric analysis (DTA/TGA), supported that alkali treatment had (i) removed lignin, (ii) separated fibers from their fiber bundles, (iii) exposed cellulose hydroxyl groups, (iv) made the fiber surface cleaner, and (v) enhanced thermal stability of the fibers by increasing cellulose crystallinity through better packing of cellulose chains. Untreated and alkali treated short (random and aligned) and long (aligned) hemp fiber/epoxy composites were produced with fiber contents between 40 and 65 wt %. Although alkali treatment generally improved composite strength, better strength at high fiber contents for long fiber composites was achieved with untreated fiber, which appeared to be due to less fiber/fiber contact between alkali treated fibers. Composites with 65 wt % untreated, long aligned fiber were the strongest with a tensile strength (TS) of 165 MPa, Young's modulus (YM) of 17 GPa, flexural strength of 180 MPa, flexural modulus of 9 GPa, impact energy (IE) of 14.5 kJ/m2, and fracture toughness (KIc) of 5 MPa m1/2. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Copolymers of polybenzoxazine (BA‐a) and urethane elastomer (PU) with three different structures of isocyanates [i.e., toluene diisocyanate (TDI), diphenylmethane diisocyanate, and isophorone diisocyanate], were examined. The experimental results reveal that the enhancement in glass transition temperature (Tg) of BA‐a/PU copolymers was clearly observed [i.e., Tg of the BA‐a/PU copolymers in 60 : 40 BA‐a : PU system for all isocyanate types (Tg beyond 230°C) was higher than those of the parent resins (165°C for BA‐a and ?70°C for PU)]. It was reported that the degradation temperature increased from 321°C to about 330°C with increasing urethane content. Furthermore, the flexural strength synergism was found at the BA‐a : PU ratio of 90 : 10 for all types of isocyanates. The effect of urethane prepolymer based on TDI rendered the highest Tg, flexural modulus, and flexural strength of the copolymers among the three isocyanates used. The preferable isocyanate of the binary systems for making high processable carbon fiber composites was based on TDI. The flexural strength of the carbon fiber‐reinforced BA‐a : PU based on TDI at 80 wt % of the fiber in cross‐ply orientation provided relatively high values of about 490 MPa. The flexural modulus slightly decreased from 51 GPa for polybenzoxazine to 48 GPa in the 60 : 40 BA‐a : PU system. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
The hybrid material of EP‐POSS mixture was synthesized by the hydrolysis and condensation of (γ‐glycidoxypropyl) trimethoxysilane. A series of binary systems of EP‐POSS/epoxy blends, epoxy resin modified by silica nanoparticles (SiO2/epoxy), and ternary system of SiO2/EP‐POSS/epoxy nanocomposite were prepared. The dispersion of SiO2 in the matrices was evidenced by transmission electron micrograph, and the mechanical properties, that is, flexural strength, flexural modulus, and impact strength were examined for EP‐POSS/epoxy blends, SiO2/epoxy, and SiO2/EP‐POSS/epoxy, respectively. The fractured surface of the impact samples was observed by scanning electron micrograph. Thermogravimetry analysis were applied to investigate the different thermal stabilities of the binary system and ternary system by introducing EP‐POSS and SiO2 to epoxy resin. The results showed that the impact strength, flexural strength, and modulus of the SiO2/EP‐POSS/epoxy system increased around by 57.9, 14.1, and 44.0% compared with the pure epoxy resin, Ti, Tmax and the residues of the ternary system were 387°C, 426°C, and 25.2%, increased remarkably by 20°C, 11°C and 101.6% in contrast to the pure epoxy resin, which was also higher than the binary systems. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 810‐819, 2013  相似文献   

17.
In previous studies, we reported the linear and nonlinear rheological properties of three‐component composites consisting of acrylic polymer (AP), epoxy resin (EP), and various SiO2 contents (AP/EP/SiO2) in the molten state. In this study, the dynamic mechanical properties of AP/EP/SiO2 composites with different particle sizes (0.5 and 8 μm) were investigated in the glass‐transition region. The EP consisted of three kinds of EP components. The α relaxation due to the glass transition shifted to a higher temperature with an increase in the volume fraction (?) for the AP/EP/SiO2 composites having a particle size of 0.5 μm, but the α relaxation scarcely shifted for the composite having a particle size of 8 μm as a general result. This result suggested that the SiO2 nanoparticles that were 0.5 μm in size adsorbed a lot of the low‐glass‐transition‐temperature (Tg) component because of their large surface area. The AP/SiO2 composites did not exhibit a shift in Tg; this indicated that the composite did not adsorb any component. The modulus in the glassy state (Eg) exhibited a very weak &phis; dependence for the AP/EP/SiO2 composites having particle sizes of 0.5 and 8 μm, although Eg of the AP/SiO2 composites increased with &phis;. The AP/EP/SiO2 composites exhibited a peculiar dynamic mechanical behavior, although the AP/SiO2 composites showed the behavior of general two‐component composites. Scanning electron microscopic observations indicated that some components in the EP were adsorbed on the surface of the SiO2 particles. We concluded that the peculiar behavior of the AP/EP/SiO2 composites was due to the selective adsorption of the EP component. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40409.  相似文献   

18.
Novel hybrid glass fiber reinforced polyester composites (GFRPCs) filled with 1‐5 wt % microsized zirconia (ZrO2) particles, were fabricated by hand lay‐up process followed by compression molding and evaluated their physical, mechanical and thermal behaviors. The consumption of styrene in cured GFRPCs was confirmed by Fourier transform infrared spectroscopy. The potential implementation of ZrO2 particles lessened the void contents marginally and substantially enhanced the mechanical and thermal properties in the resultant hybrid composites. The GFRPCs filled with 4 wt % ZrO2 illustrated noteworthy improvement in tensile strength (66.672 MPa) and flexural strength (67.890 MPa) while with 5 wt % ZrO2 showed 63.93% rise in hardness, respectively, as compared to unfilled GFRPCs. Physical nature of polyester matrix for composites and an improved glass transition temperature (Tg) from 103 to 112 °C was perceived by differential scanning calorimetry thermograms. Thermogravimetric analysis revealed that the thermal stability of GFRPCs was remarkably augmented with the addition of ZrO2. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43615.  相似文献   

19.
Three kinds of high‐molecular‐weight compatibilizers [copoly(1,4‐phenylene sulfide)‐poly(2,5‐phenylene sulfide amine)] (PPS‐NH2) containing different proportions of amino units in the side chain) were synthesized by the reaction of dihalogenated monomer and sodium sulfide via nucleophilic substitution polymerization under high pressure. The intrinsic viscosity of the obtained copolymers was 0.354–0.489 dL/g and they were found to have good thermal performance with melting point (Tm) of 271.3–281.0 °C and initial degradation temperature (Td) of 490.0–495.7 °C. There was an excellent physical compatibility between PPS‐NH2 and the pure industrial PPS. The results of dynamic mechanical analysis and macro‐ and micromechanical test showed that the selective compatibilizer PPS‐NH2 (1.0) (1.0% mol aminated ratio) can improve the mechanical and interfacial properties of polyphenylene sulfide/glass fiber (PPS/GF) composite. The macro‐optimal tensile strength, Young's modulus, bending strength, and notched impact strength of 5%PPS‐NH2 (1.0)/PPS/GF composite raised up to 141 MPa, 1.98 GPa, 203 MPa, and 6.15 kJ/m2, which increased 12.8%, 9.4%, 4.1%, and 13.8%, respectively, comparing with the pure PPS/GF composite (125 MPa, 1.81 GPa, 195 MPa, and 5.40 kJ/m2, respectively). © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45804.  相似文献   

20.
A novel polyhedral oligomeric octadiphenylsulfonylsilsesquioxane (ODPSS) was synthesized from octaphenylsilsesquioxane and benzenesulfonyl chloride via a Friedel–Crafts reaction with a high yield. ODPSS was identified by Fourier transform infrared spectroscopy, 1H‐NMR, 13C‐NMR, 29Si‐NMR, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI–TOF MS), wide‐angle X‐ray diffraction, and elemental analysis to be a kind of polyhedral oligomeric silsesquioxane of a T8R8 structure. ODPSS exhibited superior thermal stability according to thermogravimetric analysis. Its initial thermal decomposition temperature (Tonset) was at 491°C in air and 515°C in nitrogen. Thermal and mechanical properties of epoxy resin (EP) composites with ODPSS added were studied by differential scanning calorimetry and tensile testing. The results show that the incorporation of ODPSS at a low loading content not only improved the glass‐transition temperature of the EP composites but also enhanced their tensile strength. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40892.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号