首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydroxy‐terminated polybutadiene‐based prepolyurethanes and diamine chain extended polyurethane‐ureas were prepared and treated with various organic solvents in the moisture‐cured state in order to modify their ultimate strength. FTIR studies with solvent‐treated polyurethanes and polyurethane‐ureas confirmed that organic solvents penetrated inside the polyurethane hard segments and affected hydrogen bonding. The polar and non‐polar solvents showed different abilities to penetrate into polyurethane hard segments. Solvent treatment after moisture curing increased the tensile strength of these polyurethanes and polyurethane‐ureas with respect to control samples. The stress–strain behaviour of solvent‐treated polyurethane follows the constrained junction model. The change in hard segment crystallinity on solvent treatment has been explained by wide‐angle X‐ray diffraction study. The better orientation in polybutadiene soft segments evidenced from SEM (scanning electron microscopy) pictures is believed to be the main reason behind the improved tensile properties of solvent‐treated polyurethane samples. The effect of solvent treatment, as well as stretching, on the diffusion coefficient of hexane in polyurethanes was investigated. Copyright © 2003 Society of Chemical Industry  相似文献   

2.
In this study, we present the experimental results for the crosslinking process of a commercial polyester resin based on measurements of the spin lattice relaxation time T1 of protons, as function of the crosslinking time evolution. Multiexponential decomposition of the evolution of magnetization measured in inversion‐recovery experiments is performed. The population of “rigid” and “mobile” nuclear spin sites was estimated as function of time evolution. In analogy to the usual monomer conversion u, site conversion from “mobile” to “rigid” sites uM were also estimated as a function of time evolution and initial concentrations of the reagents. The multiexponential decomposition approach of T1 relaxation data allows one to follow crosslinking processes. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Polyurethane acrylate anionomer (PUAA)/silica composite gels were prepared by the sol‐gel reaction of tetraethoxysilane (TEOS) and methacryloxypropyl trimethoxysilane (MPTS) incorporated to PUAA gels by using a swelling method. The formation and structure of composites were confirmed by FTIR, X‐ray diffraction, and SEM. As a result, we found that silica components in composites are located within the ionic domains of their gels and interacted with PUAA via hydrogen bonding. This drastically enhanced the mechanical properties of the composites. Mechanical properties are also improved by MPTS, because MPTS improves the dispersibility and adhesion of silica components in PUAA/silica composite gels. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2327–2334, 2002  相似文献   

4.
A hydroxy‐terminated polybutadiene (HTPB)/isophorone diisocyanate (IPDI) elastomer is commonly used as propellant binder material. The thermal degradation of the binder is believed to be an important parameter governing the performance of the propellant. The aging of these binders can be monitored by mechanical property measurements, such as modulus or tensile elongation. These techniques, however, are not easily adapted to binder agents that are dispersed throughout a propellant. In this paper we investigated solid‐state nuclear magnetic resonance (NMR) relaxation times as a means to predict the mechanical properties of the binder as a function of aging time. Proton (1H) spin–lattice and spin–spin relaxation times were insensitive to the degree of thermal degradation of the elastomer. Apparently, these relaxation times depend on localized motions that are only weakly correlated with mechanical properties. A strong correlation was found between the 13C cross‐polarization (CP) NMR time constant, Tcp, and the tensile elongation at break of the elastomer as a function of aging time. A ramped‐amplitude CP experiment was less sensitive to imperfections in setting critical instrumental parameters for this mobile material. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 453–459, 2001  相似文献   

5.
In this work, the rheological characterization of the gel point in polymer‐modified asphalts is carried out. The viscoelastic properties of polymer‐modified asphalts, in which the polymer is styrene–ethylene butylene–styrene (SEBS) with grafted maleic anhydride (MAH), were measured as a function of MAH concentration. The crosslinking reaction that leads to gelation is characterized by power‐law frequency‐dependent loss and storage modulus (G″ and G′). The relaxation exponent n (a viscoelastic parameter related to the cluster size of the gel) and gel strength S (related to the mobility on the crosslinked chain segments) were determined. The value of the power‐law exponents depends on the composition of polymer, ranging from 0.30 to 0.56, while the value of the rigidity modulus at the gelation point (S) increases with the amount of reactive groups of the modifier polymer. Both n and S are temperature‐dependent in the blends. The blends containing gels present a coarse morphology, which is related to the rheological properties of the matrix and dispersed phase. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
A log‐log plot of sol fraction versus dose has been found to be an effective graphical technique to treat sol‐gel analysis data. The treatment procedure is described in detail with an example of radiation crosslinking of linear low‐density polyethylene. Radiation chemical yields both for crosslinking and scission of macromolecules were determined using Monte Carlo simulation. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2621–2625, 2001  相似文献   

7.
This work analyzes the influence of thermal degradation on the microstructure and the mechanical properties of low‐density polyethylene subjected to aging at 70°C in the dark for times up to 21 months. It is found that the polymer shows a gradual increase of its elastic modulus and a dramatic reduction of its ductility, due to secondary crystallization. Infrared spectroscopy (FTIR) reveals the autoaccelerated oxidation of the polymer after 5 months aging. It is observed that the unsaturated vinylidene groups initially present in the material are gradually overridden by vinyl groups and, eventually, by t‐vinylene groups. Nuclear magnetic resonance (13C NMR) shows that the initial butyl chain branches are progressively completed by shorter ramifications, namely ethyl branches. These results are discussed in term of macromolecular mechanisms: (i) oxidation, (ii) chain scission, and (iii) crosslinking. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Blends prepared by melt‐mixing of thermoplastic material‐elastomer have gained considerable attention in recent years. Heat‐shrinkability of polymer, which is dependent on elastic memory, can be introduced into the system in the form of an elastomeric phase. The present study deals with the measurement of the heat‐shrinkability of the blend of grafted polyethylene and polyurethane elastomer. Interchain crosslinking between grafted polyethylene and elastomer improves shrinkability. High‐temperature performance of the sample depends on the degree of interchain crosslinking. Probable interactions between the rubber and plastic phase are confirmed by IR spectroscopy. Extraction of the elastomeric phase is restricted due to interchain crosslinking as confirmed by SEM study. © 2000 Society of Chemical Industry  相似文献   

9.
Polyurethanes were synthesized using the high functional 4,4′‐diphenylmethane diisocyanate (MDI), polyester polyol, and 1,4‐butane diol. The synthesized polyurethanes were analyzed using differential scanning calorimeter (DSC), dynamic mechanical thermal analysis (DMTA), Fourier transform infrared (FTIR) spectrometer, and swelling measurement using N,N′‐dimethylformamide. From the result of thermal analysis by DSC and DMTA, single Tgs were observed in the polyurethane samples at all the formulated compositions. From this result, it is suggested that the polyurethanes synthesized in this study have crosslinked structure rather than the phase‐separated segmented structure because of the high functionality (f = 2.9) of the MDI. By annealing the polyurethane samples using DSC, the Tgs were increased by 4.7∼16.0°C at the various annealing temperatures. From the results of FTIR and swelling measurement of polyurethanes, it is suggested that the increase of Tg of the polyurethanes by annealing is not due to increase of the hydrogen bond strength but mainly due to the increase of the crosslink density. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 624–630, 2000  相似文献   

10.
A series of the organically modified inorganic NLO sol‐gel materials based on the prepolymer of alkoxysilanes and an alkoxysilane dye (ASD) have been investigated. Optically clear samples exhibit large second‐order optical nonlinearity (d33 = ∼10.8–54.0 pm/V at 1064 nm) after poling and curing at 220°C for 1 h. The thermal behavior of these NLO sol‐gel materials was studied by temperature‐dependent dielectric relaxation. The results indicate that the crosslinking density of cured NLO sol‐gel materials was increased with increasing alkoxysilane content. Subsequently, better temporal stabilities were obtained for the poled/cured NLO sol‐gel materials with a higher alkoxysilane content. Moreover, the structural influence of alkoxysilanes on the thermal behavior and second‐order nonlinearity was also studied for these NLO sol‐gel materials. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1852–1859, 2001  相似文献   

11.
This work prepared the highly transparent photo‐curable co‐polyacrylate/silica nanocomposites by using sol‐gel process. The FTIR and 13C NMR analyses indicated that during the sol‐gel process, the hybrid precursors transform into composites containing nanometer‐scale silica particles and crosslinked esters/anhydrides. Transmission electron microscopy (TEM) revealed that the silica particles within the average size of 11.5 nm uniformly distributed in the nanocomposite specimen containing about 10 wt % of Si. The nanocomposite specimens exhibited satisfactory thermal stability that they had 5% weight loss decomposition temperatures higher than 150°C and coefficient of thermal expansion (CTE) less than 35 ppm/°C. Analysis via derivative thermogravimetry (DTG) indicated that the crosslinked esters/anhydrides might influence the thermal stability of nanocomposite samples. The UV‐visible spectroscopy indicated that the nanocomposite resins possess transmittance higher than 80% in visible light region. Permeability test revealed a higher moisture permeation resistance for nanocomposite samples, which indicated that the implantation of nano‐scale silica particles in polymer matrix forms effective barrier to moisture penetration. Adhesion test of nanocomposite samples on glass substrate showed at least twofold improvement of adhesion strength compared with oligomer. This evidenced that the silica and the hydrophilic segments in nanocomposite resins might form interchains hydrogen bonds with the ? OH groups on the surface of glass so the substantial enhancement of adhesion strength could be achieved. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

12.
An alternative, rapid stabilization route for polyacrylonitrile (PAN) precursors is reported based on UV‐induced crosslinking and cyclization reactions. Two mechanisms of photoinitiation were investigated: homolytic cleavage and hydrogen abstraction. Solution‐cast PAN copolymer samples were irradiated for different durations (100, 300, and 600 s) and temperatures (~65 and 100°C, below and above glass transition temperature respectively). FTIR spectra show the formation of carbon–oxygen, carbon–nitrogen, and carbon–carbon double bonds (1450–1700 cm?1 region) attributed to the development of cyclized structure. Conversion indices estimated from the FTIR spectra indicate samples containing hydrogen abstraction photoinitiator show higher extents of cyclization among the three main set of samples. This observation was also confirmed by higher gel percentages measured on the same set of samples. FTIR conversion indices of samples UV‐treated above glass transition temperature were higher compared with that for the same specimens UV‐treated below glass transition temperature. DSC results show that samples containing hydrogen abstraction photoinitiator enable a higher extent of post‐UV thermal cyclization. FTIR spectra of the UV treated samples were compared with conventional thermal stabilized specimens. This comparison confirms that the addition of 1 wt % photoinitiator to PAN followed by 5 min of UV treatment increases the rate of the cyclization reaction and reduces the thermal oxidation time by over an hour, which could significantly reduce the conventional stabilization time by half. These results indicate the potential for an energy‐efficient, cost‐effective route for producing carbon fibers. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
To reduce power consumption of transparent oxide‐semiconductor thin film transistors, a gate dielectric material with high dielectric constant and low leakage current density is favorable. According to previous study, the bulk TiNb2O7 with outstanding dielectric properties may have an interest in its thin‐film form. The optical, chemical states and surface morphology of sol‐gel derived TiNb2O7 (TNO) thin films are investigated the effect of postannealing temperature lower than 500°C, which is crucial to the glass transition temperature. All films possess a transmittance near 80% in the visible region. The existence of non‐lattice oxygen in the TNO film is proposed. The peak area ratio of non‐lattice oxygen plays an important role in the control of leakage current density of MIM capacitors. Also, the capacitance density and dissipation factor were affected by the indium tin oxide (ITO) sheet resistance at high frequencies. The sample after postannealing at 300°C and electrode‐annealing at 150°C possesses a high dielectric constant (>30 at 1 MHz) and a low leakage current density (<1 × 10?6 A/cm2 at 1 V), which makes it a very promising gate dielectric material for transparent oxide‐semiconductor thin film transistors.  相似文献   

14.
Epoxy resins are among the most versatile engineering structural materials. A wide variety of epoxy resins are commercially available, but most are brittle. Several approaches have been used to improve the toughness of epoxy resins, including the addition of fillers, rubber particles, thermoplastics, and their hybrids, as well as interpenetrating polymer networks (IPNs) of acrylic, polyurethane, and flexibilizers such as polyols. This last approach has not received much attention; none of them have been able to suitably increase resin toughness with out sacrificing tensile properties. Therefore, in an attempt to fill this gap, we experimented with newly synthesized hydroxy‐terminated silicon‐modified polyurethane (SiMPU) oligomers as toughening agents for epoxy resins. SiMPU oligomers were synthesized from dimethyl dichlorosilane, poly(ethylene glycol) (weight‐average molecular weight ~ 200), and toluene 2,4‐diisocyanate and characterized with IR, 1H‐NMR and 13C‐NMR, and gel permeation chromatography. The synthesized SiMPU oligomers, with different concentrations, formed IPNs within the epoxy resins (diglycidyl ether of bisphenol A). The resultant IPN products were cured with diaminodiphenyl sulfone, diaminodiphenyl ether, and a Ciba–Geigy hardener under various curing conditions. Various mechanical properties, including the lap‐shear, peel, and impact strength, were evaluated. The results showed that 15 phr SiMPU led to better impact strength of epoxy resins than the others without the deterioration of the tensile properties. The impact strength increased continuously and reached a maximum value (five times greater than that of the virgin resin) at a critical modifier concentration (20 phr). The critical stress intensity factor reached 3.0 MPa m1/2 (it was only 0.95 MPa m1/2 for the virgin resin). © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1497–1506, 2003  相似文献   

15.
Factors—including time, temperature, morphology, and thickness of sample, the extent of silane grafting, and water concentration—that affect the rate and degree of water crosslinking reactions of the silane‐grafted LDPE are investigated. The gel content of the water‐crosslinked sample increases with increasing time, temperature, and water concentration, but with decreasing content of the crystalline component in the sample and thickness of the sample. The relationship between the gel content and the crosslinking time is dependent on thickness and morphology of the sample, and the extent of silane grafting in the sample. The crosslinking rates and the resultant gel content are inversely proportional to the content of crystalline component of the sample, suggesting that the crosslinking reactions occur mainly in the amorphous domain of the sample. For those samples with high resultant gel contents, the crystallizations of the samples are significantly enhanced by crosslinking when the gel contents are higher than about 40%, leading to a dual relationship between the gel contents of the samples and the crosslinking times. For low temperatures, the rate‐determining step of the crosslinking reactions is the diffusion of water, rather than the hydrolysis and the subsequent condensation reactions of the silyl trimethoxy groups. For high temperatures and high extents of silane grafting in the samples, however, the chemical reactions dominate the crosslinking process. The overall activation energy of the crosslinking reactions is dependent on thickness of the sample. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 186–196, 2001  相似文献   

16.
We prepared submicron‐sized N‐isopropyl acrylamide (NIPA)–N‐cyanomethyl acrylamide (NCMA) copolymer gel particles by precipitation polymerization. Volume phase transition behaviors of gel particles with various compositions and crosslinking density were observed by using photon correlation spectroscopy (PCS). The experimental data showed that both the volume transition temperature and the swelling ratio of copolymer gel particles were varied with the mole ratio of NCMA and NIPA. We compared the swelling behaviors of given systems with the thermodynamic model based on the extended Flory–Huggins theory. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1091–1099, 1999  相似文献   

17.
1,3‐Bis[(1‐alkoxycarbonyl‐2‐vinylcyclopropane‐1‐yl)carboxy]benzenes 1 [RO: CH3O (a), C2H5O (b)] were synthesized by the esterification of the corresponding 1‐alkoxycarbonyl‐2‐vinylcyclopropane‐1‐carboxylic acids with resorcinol. The structure of the new vinylcyclopropanes was confirmed by elemental analysis and infrared (IR), 1H nuclear magnetic resonance (1H‐NMR), and 13C nuclear magnetic resonance (13C‐NMR) spectroscopy. The radical polymerization of difunctional 2‐vinyl‐cyclopropanes in bulk with 2,2′‐azoisobutyronitrile (AIBN) results in hard, transparent, crosslinked polymers. During the bulk polymerization of the crystalline bis[(1‐methoxycarbonyl‐2‐vinylcyclopropane‐1‐yl)carboxy]benzene 1a, an expansion in volume of about 1% took place. The radical solution polymerization of 1a resulted in a soluble polymer with pendant 2‐vinylcyclopropane groups. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1775–1782, 1999  相似文献   

18.
The dynamic behavior of diethylene glycol bis(allyl carbonate) (CR‐39)/acrylic acid (AA) copolymers was evaluated by 13C high‐resolution solid‐state nuclear magnetic resonance (NMR). The NMR data showed that the copolymerization of CR‐39 and AA generated copolymers with different molecular behaviors as a function of AA content, which promoted changes in the crosslinking of CR‐39 chains and in the intramolecular forces. The copolymerization process influenced the sequence distribution and domain formation of the monomers, which is a consequence of the dispersion of comonomers along the macromolecular chains. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 740–745, 2005  相似文献   

19.
Incorporation of 0.5 mol % of nitrile and bromine functionalities was found to enhance the radiation crosslinking of the copolymer of tetrafluoroethylene‐co‐perfluoro(methylvinyl ether) (TFE/PMVE) by a factor of 2 for γ‐irradiations carried out at room temperature to doses in the range 0–50 kGy. The functional groups, nitrile, perfluorophenyl, and hydrogen were found to greatly enhance crosslinking well below the glass transition temperature of TFE/PMVE (276 K). Increased amounts of gel formation as well as improved tensile properties were obtained for irradiations carried out below the Tg of the polymers containing functionalized monomers. These functional groups appear to be acting as catalysts for the radiation crosslinking of TFE/PMVE but they do not get incorporated into the crosslink. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1447–1452, 2000  相似文献   

20.
Heat‐curable silicone rubber (HCSR) was prepared by using vinyl‐containing silicone resin (VSR) as the crosslinking agent instead of polyvinylsilicone oil (C gum). Mechanical properties and crosslink density of the vulcanizates were measured. The results indicate that VSR is a good crosslinking agent for HCSR. The tensile strength, tearing strength, elongation at break, and hardness of the vulcanizate can reach 10.2 MPa, 29.1 kN/m, 720%, and 58 SHA, respectively. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 3123–3127, 2002; DOI 10.1002/app.10054  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号