首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogels, based on hyaluronic acid or hyaluronan (HA), are gaining attention as possible cell‐scaffolding materials for the regeneration of a variety of tissues. This article describes how HA, a naturally occurring polymer, has been crosslinked to reduce its degradation rate and freeze dried to produce porous materials suitable for tissue engineering. The resulting pore architecture has been assessed as a function of freezing temperature and freezing rate, type of crosslinkers, and methods used in the crosslinking process. On comparing the average densities of crosslinked and uncrosslinked scaffolds, it is apparent that the chemical modification increases sponge density and wall thickness of the pores while decreasing the pore size. The mechanical response of the modified materials has been investigated by equilibrium‐swelling measurements and compression tests. These materials have an average pore size ranging from 167 to 215 μm, which suggests that they would be a suitable temporary site for cell proliferation. The materials exhibit moderate mechanical integrity and are expected to be capable of withstanding physiological stresses in vivo. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
One strategy to create chemical and physical cross‐links simultaneously is to introduce into the chemical network hydrogen bonding with clay nanofillers. Understanding the relaxation mechanisms of these systems is crucially important and has drawn the extensive interest of many scientists. In this work, the influence of different amounts of montmorillonite on the structural and rheological properties of guar gum hydrogels was investigated. Depending on the clay content, different nanostructures were identified by X‐ray diffraction (XRD) and their effect on the rheological properties of the dual hydrogels was studied. From stress and frequency sweep tests it emerged that all the samples exhibit a weak gel behavior and showed a maximum for G″ that can be ascribed to the breaking and reforming of transient physical crosslinks. This relaxation mode is more pronounced for the hydrogel for which a minimum in the swelling degree was observed. On the basis of these results, a model structure was proposed according to which the clay sheets act as effective multifunctional cross‐linkers. The more homogeneously dispersed are the clay platelets, the higher is the density of physical crosslinks. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41373.  相似文献   

3.
This work demonstrates that extrusion process can be used as a continuous reactor for the recycling of crosslinked polyethylene (XLPE) via supercritical methanol decrosslinking reaction. The multistage single screw extruder (L/D = 36, D = 40 mm) with methanol injection pump was customized for the continuous supercritical decrosslinking reaction. Reaction temperature was ranged from 360°C to 390°C. The amount of methanol was varied from 0 to 7 mL/min. The extruder provided the crosslinked polymers with the supercritical conditions of methanol during continuous process. The gel content of XLPE decreased with the increase in the reaction temperature and methanol content. Although XLPE experienced supercritical methanol for less than 2 min retention time in the continuous supercritical extruder, it was completely decrosslinked above 390°C at the methanol feeding rate of 7 mL/min. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41442.  相似文献   

4.
Small molecule borate crosslinker widely used in hydraulic fracturing treatment has a low crosslinking efficiency of less than 1%. Thus boric acid was introduced onto the surface of reactive nanosilica (denoted as nano‐SiO2; size: about 20 nm) containing ? NH2 group to obtain a nanosilica‐based crosslinker (denoted as nano‐crosslinker) with increased crosslinking efficiency, thereby broadening the application of nano‐SiO2 in guar gum fracturing fluid. Moreover, the influence of the as‐prepared nano‐crosslinker on the rheological behavior of guar gum gel was investigated with borate crosslinker as a reference. Results show that boric acid chemically reacts with the amino group of the reactive nano‐SiO2 to form N? B bond, which is beneficial to the formation of the network structure of guar gum gel. The guar gum gel crosslinked with the 57 ppm of borate based on the carrier of nano‐SiO2 exhibits better temperature tolerance and shear resistance as well as breaking behavior than the counterpart crosslinked with 200 ppm of borate. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45037.  相似文献   

5.
In this research, styrene acrylonitrile copolymer as a novel additive is used to modify rheological, mechanical and thermal properties of the base bitumen 70 penetration grade. Styrene acrylonitrile copolymer combines the rigidity of polystyrene with the hardness and thermal resistance of polyacrylonitrile to enhance viscoelastic property of the bitumen. To investigate the performance of the proposed mixture, shear complex module, phase angle, penetration, softening point, and reversibility of prepared samples are measured at different additive content and compared with the base bitumen. The results show that softening point of the base and modified samples are 49–86°C, respectively. The rheological properties of the base bitumen and modified samples are measured by a dynamic shear rheometer (DSR). The phase angle as elasticity measure decreases from 55° to 35° in the modified bitumen compared to the base bitumen. Generally, the experimental results showed that styrene acrylonitrile copolymer makes bitumen to be more stable at high temperatures and more flexible at low temperatures. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41875.  相似文献   

6.
Gellan gum is a biopolymer widely used in the food, pharmaceutical, chemical, and agrochemical fields. Its ability to form a strong gel makes it possible to produce fluid gels. These materials present an apparent yield stress, but its value could be influenced by the wall-slip effect when performing the rheological measurements by which it is determined. In this work, the influence of the measuring surface and gap on flow behavior was first determined. The tests revealed the need to use geometries with rough surfaces, although the sample thickness using a parallel plate has no influence. Subsequently, the value of yield stress was obtained by means of creep tests (found to be 4.3 Pa), and, finally, the effect of wall slip on the dynamic viscoelastic behavior was assessed. There was an influence on the extension of the linear viscoelastic region, but not on the viscoelastic functions of the mechanical spectra. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46900.  相似文献   

7.
Gels based on polyacrylamide crosslinking with polyethyleneimine have attracted attention because of their resulting high strength and good thermal stability. This study investigated the gelation mechanism of the polymeric gel and its plugging performance in air‐foam flooding. An optic microrheology analyzer was used to monitor the gelation process. The crosslinking reaction occurred in two steps, as determined from the elasticity factor curves, and the polymeric gels adopted a semisolid state from solution, as determined from the solid liquid balance curves. The elastic modulus values were higher than the viscous modulus values, indicating that mature gels were elastic‐based materials. The yield stress increased gradually with increasing polymer dosage, which was consistent with the breakthrough pressure and the trend of displacement pressure. The mature gels showed significant thixotropy. In the core displacement test, the preferred injection volume of the gel was 0.1 pore volume, and the stable pressure of the foam flooding was increased by about three times after the core was plugged. The blocking effect for cores with small original permeability was better than that with large permeability. The best blocking resulted from simultaneous treatment of both ends of the cores, followed by front‐end treatment and rear‐end treatment. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45778.  相似文献   

8.
Polyacrylamide (PAM) and its derivatives are the most commonly used polymers in the preparation of polymeric gels for water control in petroleum reservoirs. This study involved the use of polyethylenimine (PEI) as a crosslinker for PAM. In this study, we investigated PAM alkaline hydrolysis at high temperatures. The effects of salts [sodium chloride (NaCl) and ammonium chloride (NH4Cl)] on the degree of hydrolysis (DH) of PAM were investigated. These salts were used as retarders to elongate the gelation time of the PAM/PEI system. The data obtained from 13C‐NMR was used to understand the retardation mechanisms by salts. We found that NH4Cl accelerated the extent of hydrolysis more in comparison with NaCl. Moreover, the apparent viscosity of the hydrolyzed samples was measured. PAM hydrolysis in the presence of NH4Cl resulted in a lower solution viscosity than that in the presence of NaCl. Therefore, NH4Cl was more effective in shielding negative charges on the carboxylate groups of the partially hydrolyzed polyacrylamide (PHPA) chain. NaCl and NH4Cl were compatible with the PHPA/PEI system, but sodium carbonate showed a white precipitate. In addition, high‐temperature/high‐pressure elastic modulus data were reported for the first time for this system. Differential scanning calorimetry was coupled with rheology to explain the PAM/PEI crosslinking in the presence of salts. Models were developed to assess the impact of the salts on the PAM DH and the induction period before gelation. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41185.  相似文献   

9.
Polymers such as Hyaluronic acid (HA), Polyethylene glycol‐400 (PEG‐400) and Xanthan Gum (XG) are promising in drug delivery applicationsbecause of their biomedical and pharmaceutical potential applications. In HA 2%‐PEG 400 systems, the effect of pH and PEG‐400 concentration were evaluated. The viscosity of HA‐PEG 400 formulations slightly increased with PEG‐400 concentration. Viscoelastic properties and shear thinning character was strongly dependent on pH. Structured systems were obtained at pH 3, with an increase of several orders of magnitude in zero‐shear viscosity values. When XG 1% structured system is added on HA (0, 0.5, and 2%) and PEG‐400 5%, a sharp increase of viscosity can be observed, obtaining a gel‐like behaviour for HA 0.5%‐XG 1%‐PEG 400 5% formulation. Finally, metronidazole release profiles in HA 2% formulations with different PEG‐400 concentrations at pH 4.5 were studied. At least 90% of metronidazole was releasedat 24 h. However, the addition of XG 1% to the HA (0.5 and 2%)‐PEG 400 5% systems delayed the drug release. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41313.  相似文献   

10.
Organic/inorganic hybrid aqueous solutions were prepared by mixing silica nanoparticle suspension and hydrophobically associating polyacrylamide (HAPAM) solution, and their rheological behaviors were examined in both pure water and brine in comparison with HAPAM. It was found that HAPAM/silica hybrid exhibits viscosity enhancement in aqueous solution and better heat‐ and salt‐ tolerances than HAPAM. Meanwhile, their long‐term thermal stability is also improved. Cryo‐TEM observation reveals that a reinforced three‐dimensional network structure of HAPAM/silica hybrid is formed. These improved properties are attributed to the formed hydrogen bond between carbonyl groups in HAPAM skeleton and silanol functionalities in silica nanoparticles in the hybrid system, and the silica nanoparticles in the hybrid act as physical crosslinkers between macromolecules. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40876.  相似文献   

11.
The fundamental rheological properties of a wide molar mass Mw range of poly(butylene succinate)s (PBSs) are investigated. For entangled samples and a reference temperature of 140°C, the shear viscosity is described by the Carreau–Yasuda model. The plateau modulus is estimated at 1.5 × 105 Pa, the average activation energy of PBS melt is , and the critical molar mass for entanglement Mc is found to be 16,000 g mol?1 (PS equivalent). The dilute solution properties of PBS are also studied. A size exclusion chromatography equipped with a triple detection system is used to estimate the Mark–Houwink–Sakurada (MHS) parameters of PBS in solution in chloroform at 30°C. The exponent a and the coefficient K of the MHS relationship are found to be 0.71 ± 0.1 and 39.94 × 10?5 ± 6.31 × 10?5 dL g?1(g mol?1)?a, respectively. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40887.  相似文献   

12.
The aim of this study was to prepare and investigate the physical properties of a thermosensitive crosslinked chitosan pregel solution, and evaluate the in vitro release profiles of macromolecules from this sol–gel transition system. Chitosan and poly (vinyl alcohol) were used to form an interpenetrating polymeric network with glutaraldehyde as the crosslinker, and glycerophosphate (GP) was added to transform the pH‐dependent solutions into thermosensitive pH‐dependent solutions. Rheological study showed that the gelation was dependent on the crosslink degree and GP concentration of the solution. The crosslinked gel had excellent mechanic properties and no apparent “pores” and formed an integrated hydrogel texture according to scanning electronic micrograph. Gas chromatography test guaranteed the medication safety with no detection of glutaraldehyde remnants in the hydrogels. In vitro release study showed that the gelation does not significantly affect the macromolecules diffusion but the crosslinking degree does. These results indicated that the hydrogel formed an intensified three‐dimensional hybrid network with interpenetrating molecules, which effectively buffered or delayed the macromolecules diffusion. The hydrogels sustained the drug release over 30 days and could be potentially used as in situ gelling implants. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1892–1898, 2006  相似文献   

13.
This work focuses mainly about swelling and rheological properties of calcium phosphate filled bacterial cellulose (BC)-based hydrogel scaffolds. Calcium phosphate is incorporated in the form of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) in different ratios, that is, 00:00, 10:90, 20:80, 40:60, 50:50, and 60:40. These scaffolds are also comprised with polyvinylpyrrolidone (PVP), poly(ethylene glycol), agar, and glycerin; designated as “BC-PVP” and “BC-PVP-β-TCP/HA.” All the hydrogel scaffolds are showing the notable viscoelastic property at 28 and 37 °C temperatures. The degree of swelling is found significant in BC-PVP-β-TCP/HA_50:50 scaffold and it is notably elastic at 37 °C after 5 min of swelling. However, after 60 min of swelling and at equilibrium swelling state, the elastic property of BC-PVP-β-TCP/HA_20:80 is revealed the highest. Considering the degree of swelling and rheological properties, the BC-PVP-β-TCP/HA_50:50 and BC-PVP-β-TCP/HA_20:80 hydrogel scaffolds found suitable for their application in bone tissue engineering or bone tissue regeneration. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48522.  相似文献   

14.
To increase the basic knowledge of cottonseed meal (CSM)‐based adhesives and optimize the operational parameters for practical applications, in this study, we investigated the effects of pH and storage time on the adhesive performance, water resistance, and rheological properties of CSM, water‐washed cottonseed meal (WCSM), and cottonseed protein isolate (CSPI). We found all products possessed the highest dry, wet, and soaked adhesive strengths with the adhesive slurries prepared at pH 6.0. The effects of pH were smaller on WCSM than on CSM and CSPI slurries. Storage time (up to 8 days) did not greatly impact the adhesive performance of WCSM slurries prepared at pH 6.0, 7.5, and 9.0, but slightly reduced the adhesive strength of CSPI slurries with the same pH. The viscosity of WCSM slurries increased with storage over 8 days, but did not for CSPI slurries. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43637.  相似文献   

15.
Polyhedral oligomeric silsesquioxane (POSS) nanostructured chemicals, when incorporated at low levels in thermoplastics, provide processability enhancement and viscosity reduction without compromising other bulk physical properties. POSS has been relatively unexplored in high performance polymers, and there is incomplete understanding of the mechanisms by which POSS produces flow improvements. In this study, polyethersulfone (PES) was melt-blended with trisilanolphenyl (TSP)-POSS and dodecaphenyl (DP)-POSS; and rheological, dielectric spectroscopy, and scanning electron microscopy evaluations were conducted to identify structure/property/processing relationships. TSP-POSS yielded greater processability improvements and viscosity reductions than DP-POSS, suppressed low temperature relaxations to a larger extent, and displayed a greater degree of nanoscale dispersion in the polymer matrix. The findings are evaluated in terms of competing theories of POSS viscosity reduction.  相似文献   

16.
Poly(lactic acid) (PLA) stereocomplex formation in isothermal conditions in the absence and presence of a nucleating agent was studied from a rheological point of view due to sensitivity of viscoelastic properties to structural changes during this process. PDLA was melt blended in low concentrations with PLLA to produce a stereocomplex. Amorphous samples were prepared and crystallization was carried out in a rheometer at high temperatures to simulate melt processing conditions. Stereocomplexation was explored over time by measuring rheological parameters in small deformation oscillatory shear mode at a low frequency using parallel plate geometry. Kinetic data obtained by this means was compared to data from calorimetric studies, showing a different trend depending on the characterization method. Moreover, after the completion of crystallization, final crystalline structure was probed over a wide range of frequencies to investigate the rheological modification role of PDLA on PLLA major component. Differences in rheological characteristics of asymmetric PLLA/PDLA blends as compared to neat PLLA were associated to the structural changes happening because of the formation of the stereocomplex. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41073.  相似文献   

17.
In this work, the shear and elongational rheologies have been investigated for a newly developed oil displacing agent, polymeric surfactant‐PSf. It was found that the PSf solutions exhibited Newtonian, shear‐thinning, and shear‐thickening behavior, respectively, depending on the polymer concentration and shear rate, and Cox–Merz rule was not applicable to these systems. The first normal stress difference (N1) versus shear rate plots for PSf were complicated, which varied with the composition of the solutions. The uniaxial elongation in capillary breakup experimental results indicated that Exponential model could be used to fit the experimental data of the PSf solutions at lower polymer concentrations. In addition, it was found that PSf was more effective in improving shear viscosity than partially hydrolyzed polyacrylamide, but not in the case of elongational viscosity. The experimental results indicated that the microstructural mechanisms are responsible for the rheological behavior of the polymers. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40813.  相似文献   

18.
The rheological properties of Egyptian bentonite suspensions in the presence of nonionic polymers were investigated. Two different types of nonionic polymers were studied: poly(ethylene glycol) (molecular weight = 6000 g/mol) and poly(vinyl pyrrolidone) (molecular weight = 40,000 g/mol). The rheological properties (plastic viscosity, apparent viscosity, and yield point) of concentrated clay suspensions (6–8% w/w) at different temperatures after 24 h were determined. As the nonionic polymer concentrations increased, the rheological properties of the bentonite suspensions showed a slight increase, especially at an 8% clay content. The electrical properties (electrophoretic mobility and ζ potential) of Egyptian bentonite in the presence of different nonionic polymers were measured with a ζ meter. The results showed that the ζ potential of this bentonite was higher with 200 mg/L poly (vinyl pyrrolidone) than with 1000 mg/L poly(ethylene glycol). Potential energy profiles for bentonite suspensions for these nonionic polymers were constructed to show that the net energy barrier for bentonite suspensions followed repulsion or attraction between particles. These profiles showed that the potential energy profile of a bentonite suspension with 200 mg/L poly(vinyl pyrrolidone) produced a high repulsion potential energy between clay surfaces; that is, the suspension stability improved. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
High viscous polycarbonate melt exhibits some special rheological characters different from generalized Newtonian fluid during squeezing. It is necessary to evaluate whether the typical rheological models are suitable for polycarbonate squeeze. To avoid the difficult of measuring the inner melt rheological behavior directly, this study presents a method of measuring the compressing force applied on the upper disc of the rheometer to reveal the melt rheology indirectly. The finite difference method (FDM) was employed to discretize the governing equations and constitutive equations established on cylinder coordinate system and to simulate the compressing force. The experiments were carried out under four temperatures and three compressing velocities to test the validations of Leonov, Phan‐Thien–Tanner (PTT), eXtended Pom‐Pom (XPP), and Cross Williams‐Landel‐Ferry (Cross‐WLF) models. The experimental results show the unique character of compressing force evolution as ‘steep—steady—steep—steady’ pattern. Comparison between experiments and simulations reveals that both viscoelastic and viscous models can predict the two steady regions correctly, but only viscoelastic models can simulate the steep increase and decrease of the compressing force. Among the evaluated viscoelastic models, XPP is the most suitable to describe polycarbonate melt compression flow. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42279.  相似文献   

20.
The objective of the research is to obtain a more complete understanding of how aging affects the viscoelastic properties of polymer solutions to be used as starting materials for gel spinning of polymer fibers. Specifically, poly(acrylonitrile‐co‐methacrylic acid) solutions were prepared and characterized using rheological measurements and nuclear magnetic resonance spectroscopy. The results indicate that elastic character increased with increasing polymer concentration and that gelation of these solutions continued up to aging times of several weeks. Additionally, comparing the results from the two characterization methods show that while gelation continues to occur, the viscoelastic properties decrease after a critical time point suggesting that a chemical change occurs in the solutions at long times. However, these changes impact the solution dynamics minimally as the effective network properties were similar at the aging times studied here, but considerations for long‐term storage of polymer solutions for gel spinning are warranted. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39821.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号