首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(l ‐lactic acid) (PLLA) is a good biomedical polymer material with wide applications. The addition of poly(ethylene glycol) (PEG) as a plasticizer and the formation of stereocomplex crystals (SCs) have been proved to be effective methods for improving the crystallization of PLLA, which will promote its heat resistance. In this work, the crystallization behavior of PEG and PLLA/poly(d ‐lactic acid) (PDLA) in PLLA/PDLA/PEG and PEG‐b‐PLLA/PEG‐b‐PDLA blends has been investigated using differential scanning calorimetry, polarized optical microscopy and X‐ray diffraction. Both SCs and homocrystals (HCs) were observed in blends with asymmetric mass ratio of PLLA/PDLA, while exclusively SCs were observed in blends with approximately equal mass ratio of PLLA/PDLA. The crystallization of PEG was only observed for the symmetric blends of PLLA39k/PDLA35k/PEG2k, PLLA39k/PDLA35k/PEG5k, PLLA69k/PDLA96k/PEG5k and PEG‐b‐PLLA31k/PEG‐b‐PDLA27k, where the mass ratio of PLLA/PDLA was approximately 1/1. The results demonstrated that the formation of exclusively SCs would facilitate the crystallization of PEG, while the existence of both HCs and SCs could restrict the crystallization of PEG. The crystallization of PEG is related to the crystallinity of PLLA and PDLA, which will be promoted by the formation of SCs. © 2017 Society of Chemical Industry  相似文献   

2.
Enhancing the stability of plasticized poly(L ‐lactic acid) (PLLA) with poly (ethylene glycol) (PEG) is necessary for its practical application. In this study, plasticized PLLA (PLLA/PEG 80/20 wt/wt) was crosslinked under γ‐ray (Co60) in the presence of triallyl isocyanurate (TAIC) as crosslinking agent. FTIR analysis revealed that PLLA, PEG, and TAIC formed a cocrosslinking structure. Crystallization behavior and mechanical properties of the crosslinked plasticized PLLA were investigated by differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD), scanning electron microscopy (SEM), and tensile tests. Experimental results indicated that the crystallization behaviors of both PEG and PLLA in the blends were restrained after irradiation. The melting peak of PEG in the crystallized samples disappeared at a low irradiation doses about 10 kGy. Although PLLA still owned the behavior of crystallize, its cold crystallization temperature and glass transition temperature shifted to higher temperature. Mechanical properties of the plasticized PLLA were strengthened through crosslinking. Both yield strength and elastic modulus of the samples increased after crosslinking. Elongation at break of the crosslinked plasticized PLLA decreased with the increase of crosslinking density but remained a high value over 200%. SEM images of fracture surfaces confirmed that the ductile fracture behavior of plasticized PLLA was kept after suitable crosslinking. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
In this research work, biocomposites based on a ternary system containing softwood Kraft lignin (Indulin AT), poly‐L ‐lactic acid (PLLA) and polyethylene glycol (PEG) have been developed. Two binary systems based on PLLA/PEG and PLLA/lignin have also been studied to understand the role of plasticizer (i.e., PEG) and filler (i.e., lignin) on the overall physicomechanical behavior of PLLA. All samples have been prepared by melt‐blending. A novel approach has also been introduced to improve the compatibility between PLLA and PEG by using a transesterification catalyst under reactive‐mixing conditions. In PEG plasticized PLLA flexibility increases with increasing content of PEG and no significant effect of the molecular weight of PEG on the flexibility of PLLA has been observed. Differential scanning calorimetry and size‐exclusion chromatography along with FTIR analysis show the formation of PLLA‐b‐PEG copolymer for high temperature processed PLLA/PEG systems. On the other hand, binary systems containing lignin show higher stiffness than PLLA/PEG system and good adhesion between the particles and the matrix has been observed by scanning electron microscopy. However, a concomitant good balance in stiffness introduced by the lignin particles and flexibility introduced by PEG has been observed in the ternary systems. This study also showed that high temperature reactive melt‐blending of PLLA/PEG leads to the formation of a segmented PLLA‐b‐PEG block copolymer. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
聚乳酸/聚乙二醇共混物的结晶与降解行为   总被引:1,自引:0,他引:1       下载免费PDF全文
针对聚乳酸(PLLA)亲水性差、降解周期长的问题,利用与亲水性高分子聚乙二醇(PEG)共混的方法对其进行改性。采用转矩流变仪制备了不同组成的PLLA/PEG共混物颗粒,系统研究了PLLA/PEG共混物的结晶和熔融、亲水性和在酸碱介质中的降解行为。结果表明,PEG的加入增强了共混物中PLLA的结晶能力,提高了PLLA在降温过程中的熔融结晶温度。PLLA/PEG共混物在等温结晶中表现出比纯PLLA更快的结晶速度。通过改变PLLA/PEG共混物的组成,可调控材料的表面亲水性和降解速率。随着PEG含量的增多,PLLA/PEG共混物的表面接触角降低。PLLA与PLLA/PEG共混物均可在水溶液中降解,共混物的降解速率高于纯PLLA,随着PEG含量的升高和降解液中酸碱浓度的提高,PLLA/PEG共混物的降解速率加快。  相似文献   

5.
The non‐isothermal and isothermal crystallizations of extruded poly(l ‐lactic acid) (PLLA) blends with 10, 20 and 30 wt% poly(ethylene glycol) (PEG) were investigated with differential scanning calorimetry. The formation of α‐form crystals in the blend films was verified using X‐ray diffraction and an increase in crystallinity indexes using Fourier transformation infrared spectroscopy. Crystallization and melting temperatures and crystallinity of PLLA increased with decreasing cooling rate (CR) and showed higher values for the blends. Although PLLA crystallized during both cooling and heating, after incorporation of PEG and with CR = 2 °C min?1 its crystallization was completed during cooling. Increasingly distinct with CR, a small peak appeared on the lower temperature flank of the PLLA melting curve in the blends. A three‐dimensional nucleation process with increasing contribution from nuclei growth at higher CR was verified from Avrami analysis, whereas Kissinger's method showed that the diluent effect of 10 and 20 wt% PEG in PLLA decreased the effective energy barrier. During isothermal crystallization, crystallization half‐time increased with temperature (Tic) for the blends, decreased with PEG content and was lower than that of pure PLLA. In addition, the Avrami rate constants were significantly higher than those of pure PLLA, at the lower Tic. Different crystal morphologies in the PLLA phase were formed, melting in a broader and slightly higher Tm range than pure PLLA. The crystallization activation energy of PLLA decreased by 56% after the addition of 10 wt% PEG, increasing though with PEG content. Finally, PEG/PLLA blends presented improved flexibility and hydrophilicity. © 2019 Society of Chemical Industry  相似文献   

6.
In this study, stereocomplexed poly(lactide) (PLA) was investigated by blending linear poly(l ‐lactide) (PLLA) and tri‐block copolymer poly(d ‐lactide) ? (polyethylene glycol) ? poly(d ‐lactide) (PDLA‐PEG‐PDLA). Synthesized PDLA‐PEG‐PDLA tri‐block copolymers with different PEG and PDLA segment lengths were studied and their influences on the degree of sterecomplexation and non‐isothermal crystallization behaviour of the PLLA/PDLA‐PEG‐PDLA blend were examined in detail by DSC, XRD and polarized optical microscopy. A full stereocomplexation between PLLA and PDLA‐PEG4k‐PDLA200 could be formed when the L/D ratio ranged from 7/3 to 5/5 without the presence of PLA homocrystals. The segmental mobility and length of both PEG and PDLA are the dominating factors in the critical D/L ratio to achieve full stereocomplexation and also for nucleation and spherulite growth during the non‐isothermal crystallization process. For fixed PEG segmental length, the stereocomplexed PLA formed showed first an increasing and then a decreasing melting temperature with increasing PDLA segments due to their intrinsic stiff mobility. Furthermore, the effect of PEG segmental mobility on PLA stereocomplexation was investigated. The results clearly showed that the crystallization temperature and melting temperature of stereocomplexed‐PLA kept increasing with increasing PEG segmental length, which was due to PEG soft mobility in the tri‐block copolymers. However, PEG was not favourable for nucleation but could facilitate the spherulite growth rate. Both the PDLA and PEG segmental lengths in the tri‐block copolymers affect the crystallinity of stereocomplexed‐PLA and the stereocomplexation formation process; they have a different influence on blends prepared by solution casting or the melting method. © 2015 Society of Chemical Industry  相似文献   

7.
The effect of end groups (2NH2) of poly(ethylene glycol) (PEG) on the miscibility and crystallization behaviors of binary crystalline blends of PEG/poly(L ‐lactic acid) (PLLA) were investigated. The results of conductivity meter and dielectric analyzer (DEA) implied the existence of ions, which could be explained by the amine groups of PEG gaining the protons from the carboxylic acid groups of PLLA. The miscibility of PEG(2NH2)/PLLA blends was the best because of the ionic interaction as compared with PEG(2OH, 1OH‐1CH3, and 2CH3)/PLLA blends. Since the ionic interaction formed only at the chain ends of PEG(2NH2) and PLLA, unlike hydrogen bonds forming at various sites along the chains in the other PEG/PLLA blend systems, the folding of PLLA blended with PEG(2NH2) was affected in a different manner. Thus the fold surface free energy played an important role on the crystallization rate of PLLA for the PEG(2NH2)/PLLA blend system. PLLA had the least fold surface free energy and the fast crystallization rate in the PEG(2NH2)/PLLA blend system, among all the PEG/PLLA systems studied. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
Graphene oxide (GO) and carbon nanotubes (CNTs) and their compound were introduced into semicrystalline poly(l ‐lactide) (PLLA) to prepare the corresponding binary and/or ternary nanocomposites, respectively. The dispersion states of nanofillers in different nanocomposites were investigated using UV‐Vis spectroscopy, scanning electron microscopy (SEM) and rheological measurement. The results showed that when GO and CNTs were simultaneously present in the PLLA matrix, good dispersion states of both GO and CNTs could be achieved and the ternary nanocomposites exhibited percolated network structure. The effects of different nanofillers on the crystallization behavior of PLLA matrix were comparatively investigated under the different crystallization conditions including melt crystallization process (nonisothermal and isothermal crystallization from the melt) and cold crystallization (crystallization occurring from an amorphous state during the annealing process). The results showed that GO and CNTs exhibited apparent synergistic effects in improving crystallization ability and enhancing crystallinity of PLLA matrix. Study on the thermal stability of nanocomposites showed that the presence of nanofillers greatly improved the thermal stability of PLLA matrix. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40143.  相似文献   

9.
The miscibility and effect of physical aging on the crystallization behavior of poly(l ‐lactic acid) (PLLA)/poly(3‐hydroxybutyrate) (PHB) blends with a small amount of PHB (≤10 wt%) have been investigated using differential scanning calorimetry and Fourier transform infrared spectroscopy. It is found that the miscibility of PLLA/PHB blends with a very small percentage of PHB can be modulated by varying the molecular weight of the PHB. That is, a PLLA/PHB blend with low‐molecular‐weight PHB is miscible, whereas that with high‐molecular‐weight PHB is immiscible. It is found that physical aging at temperatures far below the glass transition temperature can promote the cold crystallization kinetics of PLLA in PLLA/PHB blends with high‐molecular‐weight PHB rather than in those with low‐molecular‐weight PHB. These findings suggest that the effect of physical aging on the crystallization behavior of the main component in a crystalline/crystalline blend with a small percentage of the second component is strongly dependent on the miscibility of the blend system. Enhanced chain mobility of PLLA in the interface region of PLLA matrix and PHB micro‐domains is proposed to explain the physical aging‐enhanced crystallization rate in immiscible PLLA/PHB blends with high‐molecular‐weight PHB. © 2013 Society of Chemical Industry  相似文献   

10.
Poly(ethylene glycol)‐poly(L ‐lactide) diblock and triblock copolymers were prepared by ring‐opening polymerization of L ‐lactide with poly(ethylene glycol) methyl ether or with poly(ethylene glycol) in the presence of stannous octoate. Molecular weight, thermal properties, and crystalline structure of block copolymers were analyzed by 1H‐NMR, FTIR, GPC, DSC, and wide‐angle X‐ray diffraction (WAXD). The composition of the block copolymer was found to be comparable to those of the reactants. Each block of the PEG–PLLA copolymer was phase separated at room temperature, as determined by DSC and WAXD. For the asymmetric block copolymers, the crystallization of one block influenced much the crystalline structure of the other block that was chemically connected to it. Time‐resolved WAXD analyses also showed the crystallization of the PLLA block became retarded due to the presence of the PEG block. According to the biodegradability test using the activated sludge, PEG–PLLA block copolymer degraded much faster than PLLA homopolymers of the same molecular weight. © 1999 John Wiley amp; Sons, Inc. J Appl Polym Sci 72: 341–348, 1999  相似文献   

11.
The effect of zinc phenylphosphonate (PPZn) on the crystallization behavior of poly(l ‐lactide) (PLLA) was investigated using differential scanning calorimetry (DSC) and Polarized Optical Microscopy (POM) measurements. The non‐isothermal cold crystallization results showed that the addition of PPZn obviously decreased the cold crystallization temperature of PLLA and increased the degree of crystallinity of PLLA. The isothermal crystallization kinetics results showed that the crystallization rate of PLLA with small amount of PPZn was much higher than that of neat PLLA, and the half‐time (t1/2) of PLLA/PPZn sample is far less than that of neat PLLA. As an effective nucleating agent, PPZn particles had also some influence on nucleation mechanism and crystal growth of PLLA. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2744–2752, 2013  相似文献   

12.
聚L-乳酸(PLLA)的结晶性能影响着其生物降解速度和机械强度。采用广角X射线衍射(XRD)和差示扫描量热(DSC)方法研究溶剂分子体积对PLLA结晶性能的影响。以分子摩尔体积较大的聚乙二醇(PEG)为溶剂,PLLA在较高质量分数溶液(10%)中仍具有高的结晶度(73%)、高的非等温结晶温度和快的结晶速度,结晶速度系数CRC为0.659,高于从质量分数10%小分子溶剂中结晶的结晶速度。溶剂分子的摩尔体积对聚合物分子的构象有明显的影响,从而直接影响着PLLA的结晶速度和结晶度。  相似文献   

13.
The poly(l ‐lactide)‐b‐poly(ethylene glycol)‐b‐poly(l ‐lactide) block copolymers (PLLA‐b‐PEG‐b‐PLLA) were synthesized in a toluene solution by the ring‐opening polymerization of 3,6‐dimethyl‐1,4‐dioxan‐2,5‐dione (LLA) with PEG as a macroinitiator or by transterification from the homopolymers [polylactide and PEG]. Two polymerization conditions were adopted: method A, which used an equimolar catalyst/initiator molar ratio (1–5 wt %), and method B, which used a catalyst content commonly reported in the literature (<0.05 wt %). Method A was more efficient in producing copolymers with a higher yield and monomer conversion, whereas method B resulted in a mixture of the copolymer and homopolymers. The copolymers achieved high molar masses and even presenting similar global compositions, the molar mass distribution and thermal properties depends on the polymerization method. For instance, the suppression of the PEG block crystallization was more noticeable for copolymer A. An experimental design was used to qualify the influence of the catalyst and homopolymer amounts on the transreactions. The catalyst concentration was shown to be the most important factor. Therefore, the effectiveness of method A to produce copolymers was partly due to the transreactions. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40419.  相似文献   

14.
With a constant poly(ethylene glycol) (PEG) block length while adjusting the block length of poly(L-lactide) (PLLA), two types of PLLA-PEG-PLLA copolymers were synthesized, and their crystallization under shear flow using high-temperature shear stage was investigated. Wide angle X-ray diffraction (WAXD) results show that PEG is noncrystalline due to its short chain length and confined crystallization by the presence of the PLLA microstructure. From the results calculated by Scherrer equation, the crystallite size of dynamic sample increased comparing to those of the quiescent sample. It could be concluded that the application of shear has a positive effect on the crystallization of long chain series and crystal size. Differential scanning calorimetry (DSC) measurement shows that shear reduces the double melting peak phenomenon and leads to much more uniform of the crystals.  相似文献   

15.
Both poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG) are biodegradable polymers, blending PLA with PEG is expected to toughen PLA matrix while maintaining its biodegradability. In this study, PLA/PEG blends in different ratios were prepared through triple‐screw extruder, and the foaming behavior was investigated using supercritical carbon dioxide as physical blowing agent. The mechanical, thermal, rheological properties, and crystallization behavior were also studied. By the incorporation of PEG, the impact strength of the PLA/PEG blends improved by 98% with the specimens fractured in a ductile mode. The crystallization process of the blends was accelerated, and the crystallinity was significantly increased to 45.1%. The viscoelasticity of the PLA/PEG matrix was weakened, and the cells tended to break at the cell wall during cell expansion; thus, a highly interconnected structure with a maximum porosity of 82.3% was obtained. Moreover, the PLA/PEG blends exhibited higher cell densities and smaller cell size, compared to their neat counterparts. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3066–3073, 2013  相似文献   

16.
Yong He  Ying Xu  Zhongyong Fan 《Polymer》2008,49(26):5670-5675
A unique crystallization behavior of poly(l-lactide) (PLLA)/poly(d-lactide) (PDLA) stereocomplex was observed when a PLLA/PDLA blend (50/50) was subjected to specific melting conditions. PLLA and PDLA were synthesized by ring opening polymerization of l- or d-lactide using zinc lactate as catalyst. PLLA/PDLA blend was prepared through solution mixing followed by vacuum drying. The blend was melted under various melting conditions and subsequent crystallization behaviors were analyzed by using DSC, XRD, NMR and ESEM. Stereocomplex was exclusively formed from the 50/50 blend of PLLA and PDLA with relatively low molecular weights. Surprisingly, stereocomplex crystallization was distinctly depressed when higher melting temperature and longer melting period were applied, in contrast to homopolymer crystallization. Considering predominant interactions between PLLA and PDLA chains, a novel model of melting process is proposed to illustrate this behavior. It is assumed that PLLA and PDLA chain couples would preserve their interactions (melt memory) when the stereocomplex crystal melts smoothly, thus resulting in a heterogeneous melt which can easily crystallize. The melt could gradually become homogeneous at higher temperature or longer melting time. The strong interactions between PLLA and PDLA chain segments are randomly distributed in a homogeneous melt, thus preventing subsequent stereocomplex crystallization. However, the homogeneous melt can recover its ability to crystallize via dissolution in a solvent.  相似文献   

17.
The ring‐opening polymerization of L ‐ or D ‐lactide was realized in the presence of dihydroxyl or monomethoxy poly(ethylene glycol) (PEG) with a number‐average molecular weight of 2000. The resulting low‐molar‐mass poly(L ‐lactide) (PLLA)/PEG and poly(D ‐lactide) (PDLA)/PEG triblock and diblock copolymers were characterized with nuclear magnetic resonance (NMR), differential scanning calorimetry, size‐exclusion chromatography, and X‐ray diffractometric analysis. Bioresorbable hydrogels were successfully prepared from aqueous solutions containing both copolymers because of interactions and stereocomplexation between the PLLA and PDLA blocks. Gelation was evaluated with the tube inverting method and rheological measurements. A phase diagram was realized with gel–sol transitions as a function of concentration. The rheological properties of the hydrogels were investigated under various conditions through changes in the copolymer concentration, temperature, time, and frequency. It was concluded that the hydrogels constituted a dynamic and evolutive system because of the continuous formation/destruction of crosslinks and degradation. Further studies are underway to elucidate the degradation behavior and the potential of these substances as drug carriers or cell culture scaffolds. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
Wei-Chi Lai  Wen-Bin Liau   《Polymer》2003,44(26):8103-8109
The thermo-oxidative degradation of poly(ethylene glycol)/poly( -lactic acid) (PEG/PLLA) blends was studied by infra-red spectroscopy (IR), differential scanning calorimetry (DSC), gel permeation chromatography (GPC) and thermogravimetry (TGA). The thermo-oxidative degradation of PEG occurred after a period time of aging in air at 80 °C. The mechanism of thermo-oxidative degradation of PEG was found to be the random chain scission of the main chain. As PEG blending with PLLA, the existence of PLLA appeared to enhance the thermo-oxidative degradation of PEG. The enhancement of thermo-oxidative degradation increased first and then decreased with the increase of PLLA. The results could be attributed to the ease of abstraction of the carboxylic hydrogen (–COOH) of PLLA, which enhanced the thermo-oxidative degradation of PEG. Also, the dilution effect of PLLA on the concentration of free radicals was an important factor of the thermo-oxidative degradation.  相似文献   

19.
In this work, the effect of poly(l ‐lactide) (PLLA) components on the crystallization behavior and morphology of poly(?‐caprolactone) (PCL) within PCL/PLLA blends was investigated by polarized optical microscopy, DSC, SEM and AFM. Morphological results reveal that PCL forms banded spherulites in PCL/PLLA blends because the interaction between the two polymer components facilitates twisting of the PCL lamellae. Additionally, the average band spacing of PCL spherulites monotonically decreases with increasing PLLA content. With regard to the crystallization behaviors of PCL, the crystallization ability of PCL is depressed with increase of the PLLA content. However, it is interesting to observe that the growth rate of PCL spherulites is almost independent of the PLLA content while the overall isothermal crystallization rate of PCL within PCL/PLLA blends decreases first and then increases at a given crystallization temperature, indicating that the addition of PLLA components shows a weak effect on the growth rate of the PCL but mainly on the generation of nuclei. © 2018 Society of Chemical Industry  相似文献   

20.
The cold crystallization behavior of poly (L ‐lactide) (PLLA) blend films modified by small amount of acrylic rubber particles (ACR) have been investigated by in situ Fourier‐transform infrared (FTIR) spectroscopy. During the isothermal cold crystallization, the crystallization rate of PLLA is greatly improved with addition of only 1 wt % ACR. However, for PLLA with 8 wt % ACR, the crystallization rate is slower than that of neat PLLA. The relative crystallinity of PLLA with the addition of 1–5 wt % ACR is obviously higher than that of the neat PLLA. For the PLLA blend film with 3 % ACR, the relative crystallinity reaches a maximum. It was found that the addition of ACR particles below 5% accelerated the cold crystallization nucleation process and made the cold‐crystallization rate of PLLA/ACR be quicker than that of neat PLLA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号