首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to improve the foaming performance of pure cellulose acetate (CA), blends were prepared by mixing polylactic acid (PLA) in CA and foamed by supercritical CO2 (ScCO2) in this study. The effect of PLA content (percentage by mass of blend) on structure, thermal properties, rheological properties, foaming properties and mechanical properties of the blends was investigated. The results showed that the addition of PLA destroyed the original hydrogen bonds of CA, while the blends had good crystallization properties. At the same time, compared with pure CA, the glass transition temperature (Tg) of the blends decreased, and the initial decomposition temperature (T0) was reduced from 349.41°C (pure CA) to 334.68°C (CA/20%PLA). In addition, the rheological properties of the blends were improved, and the viscosity was reduced, which was obviously beneficial to foaming process. The pore size and density of the foamed blends both reached the maximum value at 20%PLA. The presence of PLA could degrade the mechanical properties of the blends. However, the overall drop (1.01 KJ/m2) of impact strength of the blends after foaming is much smaller than that before foaming (12.11 KJ/m2), indicating that the improvement of foaming performance was beneficial to improve its impact strength.  相似文献   

2.
Polylactide (PLA) was melt blended with poly(1,2‐propylene glycol adipate) (PPA) in a Thermo‐Haake mixer. Thermal, mechanical, and rheological properties of the blends were investigated by means of differential scanning calorimetry, dynamic mechanical analysis, tensile test, and small amplitude oscillatory shear rheometry. PPA lowered the glass transition temperature and increased the ability of PLA to cold crystallization. With the increase in PPA content (5–25 wt%), the blends showed decreased tensile strength and Young's modulus; however, impact strength and elongation‐at‐break along were dramatically increased due to the plastic deformation. Morphological results of PLA/PPA blends showed that PPA was good compatible with PLA. The plasticization effect of PPA was also manifested by the lowering of dynamic storage modulus and viscosity in the melt state of the blends compared with neat PLA. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

3.
To explore a potential method for improving the toughness of a polylactide (PLA), we used a thermoplastic polyurethane (TPU) elastomer with a high strength and toughness and biocompatibility to prepare PLA/TPU blends suitable for a wide range of applications of PLA as general‐purpose plastics. The structure and properties of the PLA/TPU blends were studied in terms of the mechanical and morphological properties. The results indicate that an obvious yield and neck formation was observed for the PLA/TPU blends; this indicated the transition of PLA from brittle fracture to ductile fracture. The elongation at break and notched impact strength for the PLA/20 wt %TPU blend reached 350% and 25 KJ/m2, respectively, without an obvious drop in the tensile strength. The blends were partially miscible systems because of the hydrogen bonding between the molecules of PLA and TPU. Spherical particles of TPU dispersed homogeneously in the PLA matrix, and the fracture surface presented much roughness. With increasing TPU content, the blends exhibited increasing tough failure. The J‐integral value of the PLA/TPU blend was much higher than that of the neat PLA; this indicated that the toughened blends had increasing crack initiation resistance and crack propagation resistance. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Melt blending of poly(lactic acid) (PLA) and poly(epichlorohydrin‐co‐ethylene oxide) copolymers (ECO) was performed to improve the toughness and crystallization of PLA. Thermal and scanning electron microscopy analysis indicated that PLA and ECO were not thermodynamically miscible but compatible to some extent. The addition of a small amount of ECO accelerated the crystallization rate and increased the final crystallinity of PLA in the blends. Significant enhancement in toughness and flexibility of PLA were achieved by the incorporation of the ECO elastomer. When 20 wt% ECO added, the impact strength increased from 5 kJ/m2 of neat PLA to 63.9 kJ/m2, and the elongation at break increased from 5% to above 160%. The failure mode changed from brittle fracture of neat PLA to ductile fracture of the blend. Rheological measurement showed that the melt elasticity and viscosity of the blend increased with the concentration of ECO. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers.  相似文献   

5.
赵永青  陈福泉  冯彦洪  瞿金平 《化工学报》2014,65(10):4197-4202
聚乳酸(PLA)与环氧大豆油(ESO)经熔融共混制得具有高韧性的PLA/ESO共混物,并研究了ESO含量对PLA微观形态、力学和流变性能的影响规律。结果表明:ESO可显著降低PLA的熔体黏度,提高PLA的韧性;PLA/ESO共混物在低ESO含量(10%)时为部分相容,而在高ESO含量(20%和30%)时发生了相分离,从而使共混物的断裂伸长率和冲击强度随ESO含量增加先增大后减小,且分别在ESO含量为20%和15%时达到最大值,约为PLA的17倍和2.9倍,而拉伸强度则随之减小。  相似文献   

6.
This work aimed to study, for the first time, the melt blending of poly(lactic acid) (PLA) and ethylene acrylic acid (EAA) copolymer by a novel vane extruder to toughen PLA. The phase morphologies, mechanical, and rheological properties of the PLA/EAA blends of three weight ratios (90/10, 80/20, and 70/30) were investigated. The results showed that the addition of EAA improves the toughness of PLA at the expense of the tensile strength to a certain degree and leads the transition from brittle fracture of PLA into ductile fracture. The 80/20 (w/w) PLA/EAA blend presents the maximum elongation at break (13.93%) and impact strength (3.18 kJ/m2), which is 2.2 and 1.2 times as large as those of PLA, respectively. The 90/10 and 80/20 PLA/EAA blends exhibit droplet‐matrix morphologies with number average radii of 0.30–0.73 μm, whereas the 70/30 PLA/EAA blend presents an elongated co‐continuous structure with large radius (2.61 μm) of EAA phase and there exists PLA droplets in EAA phase. These three blends with different phase morphologies display different characteristic linear viscoelastic properties in the low frequency region, which were investigated in terms of their complex viscosity, storage modulus, loss tangent, and Cole‐Cole plots. Specially, the 80/20 PLA/EAA blend presents two circular arcs on its Cole‐Cole plot. So, the longest relaxation time of the 80/20 blend was obtained from its complex viscosity imaginary part plot, and the interfacial tension between PLA and EAA, which is 4.4 mN/m, was calculated using the Palierne model. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40146.  相似文献   

7.
This work focuses on improve the mechanical properties of poly(lactic acid)/poly(ethylene-co-vinyl alcohol) (PLA/EVOH) blend and simultaneously remained a high Vicat softening temperature (VST) using appropriate contents of methyl methacrylate–butadiene–styrene copolymer (MBS) via simple melt blending. The effects of MBS on the heat resistant, mechanical properties, thermal properties and rheological behavior were examined in detail with various techniques. The VST of neat PLA significantly increased to 159 °C from 66.8 °C after blending with 50 wt% EVOH. However, the VST was gradually decreased with increasing MBS content but were still much higher than that of neat PLA. On the basis of the tensile and impact tests results, PLA/EVOH/MBS blends showed a considerably higher elongation at break and impact strength. For all PLA/EVOH/MBS blends, the thermal stability was increased compared than that of PLA/EVOH blend without MBS. With increasing MBS content, the complex viscosity and storage modulus of PLA/EVOH blend increased, especially at low frequencies, indicating that MBS enhanced the chain entanglement in the PLA/EVOH matrix. In addition, the results Han curves and Cole–Cole plots indicated that the relaxation time was increased when MBS was added.  相似文献   

8.
采用哈克密炼机制备了聚乳酸(PLA)与马来酸酐接枝苯乙烯-乙烯-丁二烯-苯乙烯嵌段共聚弹性体(SEBS-g-MAH)的共混物,并对共混物的力学性能、流变性能和微观结构进行了分析。结果表明,共混物的拉伸强度随着SEBS-g-MAH含量的增加而下降,断裂伸长率随着SEBS-g-MAH含量的增加而增大。当SEBS-g-MAH的含量为30 %时,共混物的冲击强度提高了2.5倍,共混物的韧性得到提高。随着SEBS-g-MAH含量的增加,PLA熔体黏度的变化趋势与SEBS-g-MAH越来越相似,即熔体黏度随着频率的增大而下降。扫描电镜分析表明,MAH基团改善了两相间的界面作用,增韧作用明显。  相似文献   

9.
Biodegradable conductive polymer blends made from poly(lactic acid) (PLA), liquid natural rubber (LNR) and polyaniline (PANI) were prepared via a melt‐blending technique assisted by ultrasonic treatment. The effects of PANI at low loading (0.03 to 0.11 wt%) on the electrical conductivity and mechanical, thermal and physical properties of PLA/LNR/PANI blends were investigated. It was found that the mechanical properties of samples improved when PANI was introduced into PLA/LNR. Tensile results showed that the optimum loading of PANI was achieved at 0.07 wt% with an improvement of 8% in tensile strength compared to neat PLA/LNR. Although it was at low loading, the incorporation of PANI promoted an outstanding electrical conductivity to PLA/LNR blends. Thermal analysis of the PLA/LNR/PANI blends was conducted using differential scanning calorimetry and thermogravimetry. The thermal stabilities of the blends were improved markedly with the presence of PANI. Comparing to PLA/LNR, the incorporation of PANI component improved the resistance towards water absorption. Variable‐pressure scanning electron microscopy micrographs of PLA/LNR/PANI confirmed the good mixing of PANI with PLA/LNR and strong interaction networks among the PANI, PLA and LNR components. © 2018 Society of Chemical Industry  相似文献   

10.
A series of the reinforced and toughened polylactide (PLA) composites with different content of basalt fibers (BF) were prepared by twin screw extruder. The toughness of BF/PLA composite s was improved further by the addition of polyoxyethylene grafted with maleic anhydride (POE-g-MAH), ethylene–propylene–diene rubber grafted with maleic anhydride (EPDM-g-MAH), and ethylene-acrylate-glycidyl methacrylate copolymer (EAGMA), relatively. The mechanical properties, rheology, crystallization, and morphology of BF/PLA composites were studied. The results showed that basalt fiber had significant reinforcing and toughening effect in comparsion with glass fiber. EAGMA was more effective in toughening BF/PLA composites than POE-g-MAH and EPDM-g-MAH. When the content of EAGMA achieved to 20 wt %, the impact strength of BF/PLA/EAGMA composite increased to 33.7 KJ/m2, meanwhile the value was improved by 71.1% compared with pure PLA. According to dynamic rheometer testing, the use of the three kinds of elastomers increased the melt dynamic viscosity. Differential scanning calorimetry analysis showed that POE-g-MAH and EPDM-g-MAH can decrease the cold crystallization temperature (Tcc) to approximately 20°C and dramatically improve crystallinity (χc) of BF/PLA composites. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
This work presented the influence of thermoplastic poly(ether-ester) elastomer (TPEE) and bentonite (BTN) on improving the mechanical and thermal properties of poly(lactic acid) (PLA). PLA was initially melt mixed with TPEE at six different loadings (5–30 wt%) on a twin screw extruder and then injection molded. The mechanical tests revealed an increasing impact strength and elongation at break with increasing TPEE loading, but a diminishing Young's modulus and tensile strength with respect to pure PLA. The blend at 30 wt% TPEE provided the optimum improvement in toughness, exhibiting an increase in the impact strength and elongation at break by 3.21- and 10.62-fold over those of the pure PLA, respectively. Scanning electron microscopy analysis illustrated a ductile fractured surface of the blends with the small dispersed TPEE domains in PLA matrix, indicating their immiscibility. The 70/30 (wt/wt) PLA/TPEE blend was subsequently filled with three loadings of BTN (1, 3, and 5 parts by weight per hundred of blend resin [phr]), where the impact strength, Young's modulus, tensile strength and thermal stability of all the blends were improved, while the elongation at break was deteriorated. Among the three nanocomposites, that with 1 phr BTN formed exfoliated structure and so exhibited the highest impact strength, elongation at break, and tensile strength compared to the other intercalated nanocomposites. Moreover, the addition of BTN was found to increase the thermal stability of the neat PLA/TPEE blend due to the barrier properties and high thermal stability of BTN.  相似文献   

12.
13.
To attain eco-friendly and sustainable polylactide (PLA) materials possessing highly enhanced toughness, thermal stability, and processability without significant loss in elastic modulus, for the first time, PLA-dominant blends with 1–30 wt% glycidyl methacrylate-grafted polypropylene (PPGMA) loadings are fabricated via an efficient masterbatch melt-compounding process. For the purpose, PPGMA is fabricated via in situ grafting reaction of PP with GMA and styrene. The scanning electron microscope images reveal that PLA/PPGMA blends do not show recognizable phase-separated domains, unlike immiscible PLA/PP blends. The Fourier-transform infrared spectroscopic and melt-rheological analyses support the presence of specific interactions between PLA and PPGMA as well as the compatibilizing effect of PPGMA-g-PLA formed during the melt-compounding. The thermal analyses demonstrate that PPGMA component accelerates the crystallization of PLA in the blends and that the thermal decomposition temperatures of PLA/PPGMA blends are higher than those of neat PLA and PPGMA components. The dynamic mechanical analysis shows that a maximum storage modulus is attained for PLA-dominant blend with 30 wt% PPGMA. Noticeably, the impact strength (≈305.6 J m−1) of PLA-dominant blend with only 5 wt% PPGMA loading is almost three times higher than that (≈111.6 J m−1) of neat PLA and it is very comparable to the value (≈316.9 J m−1) of neat PP.  相似文献   

14.
15.
The effect of the addition of poly(styrene‐co‐glycidyl methacrylate) P(S‐co‐GMA) copolymer on the properties of melt blended polylactide/poly(methyl methacrylate) (PLA/PMMA) 80/20 (wt %) composition was studied. In the literature high ductility levels were achieved by melt blending PLA with different additives. However, the gained ductility was counter balanced with drastic drops in strength and modulus values. The novelty of this work was the preparation of PLA‐based blends with polylactide content higher than 75 wt % which showed an impact resistance value improvement of about 60% compared with the neat PLA and maintained similar tensile strength and modulus values as well as glass transition temperature to neat PLA. The addition of only 3 pph of copolymer to PLA/PMMA blend improved the impact resistance almost 100%. The chemical reaction between PLA/PMMA blend and P(S‐co‐GMA) copolymer were analyzed by FTIR, rotational rheometry, and GPC/SEC. Phase structure and morphology were studied by Differential Scanning Calorimetry and Scanning Electronic Microscopy. Tensile and impact properties as well as thermal stability were also studied. Results showed that as the amount of copolymer in the blend was increased then higher was average molecular weight and polydispersity index. After the addition of P(S‐co‐GMA) copolymer to the PLA/PMMA blend the impact resistance, elongation at break and thermal stability were improved while tensile strength and elastic modulus remained almost unaltered. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43935.  相似文献   

16.
Summary  Poly(lactic acid) (PLA) was melt blended with epoxidized soybean oil (ESO) in an internal mixer and thermal, mechanical and rheological properties of the blends were investigated by means of differential scanning calorimetry, dynamic mechanical analysis, tensile test and small amplitude oscillatory shear rheometry. ESO lowered glass transition temperature and increased the ability of PLA to cold crystallization. The blend exhibited improved elongation-at-break along with a plastic deformation. The plasticization effect by ESO was also manifested by the lowering of dynamic storage modulus and viscosity in the melt state of the blends compared with neat PLA.  相似文献   

17.
Melt blending of poly(lactic acid) (PLA) and ethylene/methyl acrylate/glycidyl methacrylate terpolymer (EGA) containing relatively high‐concentration epoxide groups (8 wt%) was performed to improve the toughness and crystallization of PLA. The results of nonisothermal and isothermal crystallization investigation showed that the addition of EGA accelerated the crystallization rate and increased the final crystallinity of PLA in the blends. Significant enhancement in toughness and flexibility of PLA were achieved by the incorporation of the EGA elastomer. When 20 wt% EGA added, the impact strength increased from 3.0 kJ m?2 of neat PLA to 59.8 kJ m?2 and the elongation at break increased from 4.9 to 232.0%. The failure mode changed from brittle fracture of neat PLA to ductile fracture of the blend. POLYM. ENG. SCI., 53:2498–2508, 2013. © 2013 Society of Plastics Engineers  相似文献   

18.
Styrene–butadiene impact resin (SBC) was chosen as the toughening agent to improve the tensile toughness of polylactide (PLA). Epoxidized SBC (ESBC) with different epoxidation degree were prepared by epoxidation using in situ peroxoformic acid method and a series of PLA/SBC(ESBC) blends were prepared by melt blending. The elongation at break of the PLA/ESBC blends was greatly improved, which was reflected in the slight decrease in the tensile strength and tensile modulus. Moreover, the tensile strength and tensile modulus were not significantly affected by the epoxidation degree of ESBC. For example, the incorporation of ESBC28.8% (30 wt %) to PLA caused an obvious increment of elongation at break from 3.5% of pure PLA to 305.0%, while the tensile modulus and tensile strength decreased to 80 and 78% of pure PLA, respectively. Scanning electron microscopy observations of cryo‐fractured surface morphology and particle size analysis demonstrated that the compatibility of the PLA/ESBC blends was improved significantly compared to PLA/SBC blend. PLA/ESBC(70/30) blends exhibited shear‐thinning behavior over the range of the studied shear rate. With an increase in shear rate, the non‐Newtonian index of the blends decreased gradually. Furthermore, the flow behavior of PLA/ESBC(70/30) blends was more sensitive to the shear rate than pure PLA. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46058.  相似文献   

19.
Biosourced poly(lactic acid) (PLA) blends with different content of poly(ethylene oxide‐b‐amide‐12) (PEBA) were prepared by melt compounding. The miscibility, phase structure, crystallization behavior, mechanical properties, and toughening mechanism were investigated. The blend was an immiscible system with the PEBA domains evenly dispersed in the PLA matrix. The PEBA component suppressed the nonisothermal melt crystallization of PLA. With the addition of PEBA, marked improvement in toughness of PLA was achieved. The maximum for elongation at break and impact strength of the blend reached the level of 346% and 60.5 kJ/m2, respectively. The phase morphology evolution in the PLA/PEBA blends after tensile and impact tests was investigated, and the corresponding toughening mechanism was discussed. It was found that the PLA matrix demonstrates obvious shear yielding in the blend during the tensile and impact tests, which induced energy dissipation and therefore lead to improvement in toughness of the PLA/PEBA blends. POLYM. COMPOS., 2013. © 2012 Society of Plastics Engineers  相似文献   

20.
Polylactide (PLA)/linear low‐density polyethylene (LLDPE), (PLA/LLDPE), blends and nanocomposites were prepared by melt mixing process with a view to fine tune the properties. Two different commercial‐grade nanoclays, Cloisite® 30B (30B) and Cloisite® 15A (15A) were used. A terpolymer of ethylene, butylacrylate (BA) and glycidylmethacrylate (GMA) was used as a reactive compatibilizer. The influence of type of clay on the morphology and mechanical properties of two PLA‐rich and LLDPE‐rich blend systems was studied. Morphological analysis using X‐ray diffraction, transmission electron microscopy, and scanning electron microscopy revealed that the organoclay layers were dispersed largely at the interface of PLA/LLDPE. Decreasing the PLA content changed the morphology from droplet‐in matrix to coarse co‐continuous. In comparison with 30B, due to less affinity of 15A towards compatibilizer and PLA phase, the reduction of the size of dispersed phase was less than that of the equivalent 30B composites. The mechanical results demonstrated that the composites containing both types of organoclay exhibited higher modulus but lower elongation and tensile strength as compared to the neat blends. The injection molded nanocomposites were shown to have the sequential fracture behavior during tensile test. The tensile testing results on the neat blends and nanocomposites showed significant increase in elongation at break and decrease in the modulus as compared with the neat PLA. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 749‐758, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号