首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The adsorption of Cu2+ from aqueous solution using crosslinked chitosan hydrogels impregnated with Congo Red (CR) by ion‐imprint technology was systematically investigated with particular reference to the effects of contact time, pH, and initial concentration on adsorption. RESULTS: The adsorption capacity of the crosslinked chitosan without impregnation was only 68.68 mg g?1 for Cu2+. However, the adsorption capacity increased from 77.42 (without imprint ion) to 84.54 mg g?1 (imprint ion content 0.5 mmol) after the chitosan was impregnated with a ratio of 1/12 of CR to chitosan. The as‐prepared adsorbents were found to be pH‐dependent and the process of adsorption agreed well with the Freundlich isotherm. The loaded adsorbents could be regenerated and reused without the appreciable loss of capacity. CONCLUSION: Chitosan hydrogels impregnated with CR showed higher Cu2+ adsorption capacities compared with those prepared conventionally without imprint ion, and thus developed a good approach to increase Cu2+ adsorption efficiency in the treatment of waste‐water. Copyright © 2012 Society of Chemical Industry  相似文献   

2.
The adsorption capacity of two low‐cost adsorbents, Oryza sativa L. husk and chitosan, was studied. Lead solution was used as the adsorbate. The effect of initial lead concentration, pH, temperature, weight of adsorbent, particle size and contact time on lead uptake was investigated. It was found that the isotherm data were well described by the Freundlich isotherm for both adsorbents. The adsorption capacities of rice husk and chitosan were 5.69 and 8.31 mg g?1, respectively. It was shown that chitosan was more effective than rice husk. Copyright © 2005 Society of Chemical Industry  相似文献   

3.
Epichlorohydrin cross-linked chitosan microspheres (CS) and chitosan–heparin polyelectrolyte complex microspheres (CSH) were used in the adsorption of copper (II) ions in aqueous solution. The chitosan microspheres were prepared by the phase inversion method. The use of a cross-linking agent improved the resistance to acidic medium. Polyelectrolyte complex microspheres were prepared by impregnating heparin in cross-linked chitosan microspheres. The microspheres were characterized by IR, TGA and DSC. A study on the effect of the pH on the adsorption of copper (II) ions showed that the optimum pH for both CS and CSH microspheres was 6.0. From a kinetic evaluation, it could be established that the adsorption equilibrium was achieved after 8 h for CS and 25 h for CSH microspheres. The adsorption isotherms were interpreted using Langmuir and Freundlich mathematical models. The results revealed that experimental data of CS was best adjusted by Langmuir model, with maximum capacity of surface saturation equal to 39.31 mg g−1. On the other hand, Langmuir and Freundlich models provided a good fit for adsorption by CSH and the adsorption capacity was 81.04 mg g−1. The interactions between copper (II) ions and both CS and CSH were confirmed by electron paramagnetic resonance spectroscopy, which revealed the formation of a square-planar complex with tetrahedral distortion on the surface of the adsorbents.  相似文献   

4.
BACKGROUND: The recovery of neodymium from dilute solutions has become important because of its wide application in industry. This work reports the preparation of novel carboxymethyl chitosan adsorbents entrapped by silica (SiO2/CMCH) and their application for adsorption of neodymium(III) ions from aqueous solution. RESULTS: The effect of the CMCH content, equilibrium pH (pHe), contact time, initial concentrations of Nd(III) and temperature on the adsorption was investigated. The amount of Nd(III) adsorption increases with increasing pHe, which can be explained by the pH‐titration curve of CMCH. Temperature has a positive effect on Nd(III) adsorption, and the amount adsorbed is 53.04 mg g?1 dry adsorbent or 434.75 mg g?1 CMCH at 328 K. Adsorption kinetics and isotherm can be described by the pseudo‐second‐order model and Langmuir equation. Both complexation and ion exchange mechanisms are believed to play an important role in Nd(III) adsorption, and possible coordination between CMCH and Nd(III) is speculated. Complete desorption can be reached when the concentration of HCl is more than 0.1 mol L?1. CONCLUSION: A novel method was developed to prepare SiO2/CMCH adsorbents through a one‐step sol‐gel strategy. The prepared adsorbents were biocompatible and non‐toxic with a good adsorption ability for Nd(III), and could be used for adsorptive recovery of Nd(III) from aqueous solutions. © 2012 Society of Chemical Industry  相似文献   

5.
Poly(methacrylic acid)‐grafted chitosan membranes (chitosan‐g‐poly(MAA)) were prepared in two sequential steps: in the first step, chitosan membranes were prepared by phase‐inversion technique and then epichlorohydrin was used as crosslinking agent to increase its chemical stability in acidic media; in the second step, the graftcopolymerization of methacrylic acid onto the chitosan membranes was initiated by ammonium persulfate (APS) under nitrogen atmosphere. The chitosan‐g‐poly(MAA) membranes were first used as an ion‐exchange support for adsorption of trypsin from aqueous solution. The influence of pH, equilibrium time, ionic strength, and initial trypsin concentration on the adsorption capacity of the chitosan‐g‐poly(MAA) membranes have been investigated in a batch system. Maximum trypsin adsorption onto chitosan‐g‐poly(MAA) membrane was found to be 92.86 mg mL?1 at pH 7.0. The experimental equilibrium data obtained for trypsin adsorption onto chitosan‐g‐poly(MAA) membranes fitted well to the Langmuir isotherm model. The adsorption data was analyzed using the first‐ and second‐order kinetic models, and the experimental data was well described by the second‐order equation. More than 97% of the adsorbed trypsin was desorbed using glutamic acid solution (0.5M, pH 4.0). In addition, the chitosan‐g‐ poly(MAA) membrane prepared in this work showed promising potential for various biotechnological applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
A novel magnetic adsorbent (EDTA /chitosan/ PMMS) was facilely prepared by reacting chitosan with EDTA anhydride in presence of PEI ‐ coated magnetic microspheres. The as‐synthesized EDTA/ chitosan /PMMS was characterized by XRD, SEM, TGA, FT‐IR , and VSM, and then employed in removal of heavy metals of Pb(II) from aqueous solution. The results of the batch adsorption experiments revealed that the adsorbents had extremely high uptake capacities for Pb(II) in the pH range of 2 to 5.5, and the adsorption kinetics for EDTA/ chitosan /PMMS was consistent with the pseudo – second ‐ order kinetic model. Moreover, its equilibrium data were fitted with the Langmuir isothermal model well, which indicated that the adsorption mechanism was a homogeneous monolayer chemisorptions process. The maximum adsorption capacity of EDTA/ chitosan /PMMS for Pb(II) was found to be 210 mg g ? 1 at pH 4 (30 ° C), and further reuse experiments results suggested that EDTA /chitosan/ PMMS could be a potential recyclable magnetic adsorbent in the practical wastewater treatment. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42384.  相似文献   

7.
The preparation of poly(methacrylic acid)‐modified chitosan microspheres and its application for the removal of cationic dyes, methylene blue (MB) and malachite green (MG), in aqueous solution in a batch system were described. The modified chitosan was characterized using SEM, FTIR, and XPS analyses. The effects of the pH of the solution, contact time, and initial dye concentration were studied. The adsorption capacities of the microspheres for the two cationic dyes increased significantly after the modification because a large number of carboxyl groups were introduced. The equilibrium process was better described by the Langmuir than the Freundlich isotherm. According to the Langmuir equation, the maximum adsorption capacities were 1000.0 and 523.6 mg g?1 for MB and MG, respectively. Kinetic studies showed better correlation coefficients for a pseudo‐second‐order kinetic model, confirming that the sorption rate was controlled by a chemisorption process. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

8.
The epoxy‐group‐containing microspheres from cross‐linked glycidyl methacrylate and methyl methacrylate, poly(GMA–MMA), were prepared by suspension polymerisation. The epoxy groups of the poly(GMA–MMA) microspheres were used for grafting with an anionic polymer polyethylenimine (PEI) to prepare non‐specific affinity adsorbents (poly(GMA–MMA)–PEI) for bilirubin removal. The specificity of the poly(GMA–MMA)–PEI adsorbent to bilirubin was further increased by immobilization of human serum albumin (HSA) via adsorption onto PEI‐grafted poly(GMA–MMA) adsorbent. Various amounts of HSA were immobilized on the poly(GMA–MMA)–PEI adsorbent by changing the medium pH and initial HSA concentration. The maximum HSA content was obtained at 68.3 mg g?1 microspheres. The effects of pH, ionic strength, temperature and initial bilirubin concentration on the adsorption capacity of both adsorbents were investigated in a batch system. Separation of bilirubin from human serum was also investigated in a continuous‐flow system. The bilirubin adsorption on the poly(GMA–MMA)–PEI and poly(GMA–MMA)–PEI–HSA was not well described by the Langmuir model, but obeyed the Freundlich isotherm model. The poly(GMA–MMA)–PEI affinity microspheres are stable when subjected to sanitization with sodium hydroxide after repeated adsorption–desorption cycles. Copyright © 2004 Society of Chemical Industry  相似文献   

9.
《分离科学与技术》2012,47(14):2298-2304
The preparation of poly(methacrylic acid) modified chitosan microspheres (PMAA-GLA-CTS) and its application for the removal of cationic dye, methylene blue (MB), in aqueous solution in a batch system were described. The modified chitosan was characterized using FTIR and XPS analysis. The effects of the pH of the solution, contact time, and initial dye concentration were studied. The adsorption capacity of the microspheres for MB increased significantly after the modification as a large number of carboxyl groups were introduced. The equilibrium process was better described by the Langmuir rather than the Freundlich isotherm. According to the Langmuir equation, the maximum adsorption capacity was 1 g · g?1 for MB. Kinetic studies showed better correlation coefficients for a pseudo-second-order kinetic model, confirming that the sorption rate was controlled by a chemisorption process. Photocatalytic regeneration of spent PMAA-GLA-CTS using UV/TiO2 is effective. Further, the regenerated PMAA-GLA-CTS exhibits 90% efficiency for a subsequent adsorption cycle with MB aqueous solutions.  相似文献   

10.
The poly(2‐(diethylamino)ethyl methacrylate)/palygorskite (PDEAEMA/PAL) composite microspheres were prepared via Pickering emulsion polymerization using palygorskite (PAL) as an emulsifier. The morphology, chemical structure, and content of PDEAEMA/PAL composite microspheres were investigated by polarizing optical microscopy, scanning electron microscopy (SEM), Fourier‐transform infrared (FT‐IR) spectroscopy, and thermal gravimetric analysis (TGA). The pH‐responsive behavior of composite microspheres was studied by measuring their size at different pH values. Furthermore, their release behavior was investigated using rhodamine B (RhB) as a model molecule. It was proven that the release properties of RhB from PDEAEMA/PAL composite microspheres could be controlled by adjusting the pH values. The study of release kinetics found that Higuchi model was fit for RhB release from PDEAEMA/PAL composite microspheres at pH 5.0, 7.4, and 10.0. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42179.  相似文献   

11.
Protonated cross-linked chitosan was used to remove perchlorate from aqueous solution. Adsorption isotherms, the effects of pH and co-existing anions on the adsorption process, proper actual contact time in the adsorption column and the regeneration ability of the adsorbent were investigated. The equilibrium data fitted well with Langmuir and Freundlich isotherm models, and the maximum monolayer adsorption capacity was 45.455 mg g?1. To balance the protonated degree of the amino groups and the effect of the ion competing on adsorption capacity, the optimal pH value was determined to be about 4.0. Column adsorption results indicated that the proper actual contact time was 8.1 min and the effluent perchlorate could be steadily kept below 24.5 μg L?1 up to about 95 bed volumes with the influent perchlorate of 10 mg L?1. The presence of other anions weakened the perchlorate adsorption, especially the high valence anion such as sulfate. The adsorbents could be well regenerated by sodium hydroxide solution with pH 12 and reused at least for 15 cycles. Electrostatic attraction as well as physical force was the main driving force for perchlorate adsorption.  相似文献   

12.
To further improve the adsorption capacity of chitosan (CTS), a series of novel chitosan/organo‐montmorillonite nanocomposites (CTS/OMMT) were synthesized and the adsorption abilities for Congo red (CR) investigated in this study. The nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction analysis (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the results indicated that an exfoliated nanostructure was formed in CTS/OMMT nanocomposites. Compared with the adsorption capacity of OMMT (192.4 mg g?1), CTS/OMMT with an amount of cetyltrimethylammonium bromide equal to 0.75 CEC of MMT and molar ratio of CTS to OMMT of 1:10 exhibited the higher adsorption capacity (290.8 mg g?1). The adsorption behaviours of OMMT and CTS/OMMT showed that the adsorption kinetics and isotherms were in good agreement with a pseudo‐second‐order equation and the Langmuir equation, respectively. The IR spectra revealed that a chemical interaction occurred between CTS/OMMT and CR. The adsorption capacity of CTS/OMMT nanocomposite was higher than that of other absorbents; this study suggested that the CTS/OMMT nanocomposite could be used as an adsorbent to remove CR dye from aqueous solution. Copyright © 2007 Society of Chemical Industry  相似文献   

13.
Composite membranes were synthesized with 2‐hydroxyethylmethacrylate and chitosan (pHEMA/chitosan) via an ultraviolet‐initiated photopolymerization technique in the presence of an initiator (α,α′‐azobisisobutyronitrile). The interpenetrating network (IPN) membranes were improved by the immobilization of dye molecules via hydroxyl and amino groups on the membrane surfaces from the IPNs. A triazidine dye (Procion Green H‐4G) was covalently immobilized as a ligand onto the IPN membranes. The protein showed various affinities to different chelated metal ions on the membrane surfaces that best matched its own distribution of functional sites, resulting in a distribution of binding energies. In support of this interpretation, two different metal ions, Zn(II) and Fe(III), were chelated with the immobilized dye molecules. The adsorption and binding characteristics of the different metal‐ion‐chelated dye‐immobilized IPN membranes for the lysozyme were investigated with aqueous solutions in magnetically stirred cells. The experimental data were analyzed with two adsorption kinetic models, pseudo‐first‐order and pseudo‐second‐order, to determine the best fit equation for the adsorption of lysozyme onto IPN membranes. The second‐order equation for the lysozyme–dye–metal‐chelated IPN membrane systems was the most appropriate equation for predicting the adsorption capacity for all the tested adsorbents. The reversible lysozyme adsorption on the dye‐immobilized and metal‐ion‐chelated membranes obeyed the Temkin isotherm. The lysozyme adsorption capacity of the pHEMA/chitosan dye, pHEMA/chitosan dye–Zn(II), and pHEMA/chitosan dye–Fe(III) membranes were 2.54, 2.85, and 3.64 mg cm?2, respectively. The nonspecific adsorption of the lysozyme on the plain pHEMA/chitosan membrane was about 0.18 mg cm?2. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1843–1853, 2003  相似文献   

14.
pH and temperature dual‐sensitive protein imprinted microspheres with high absorption capacity have been successfully synthesized on the surface of SiO2 using chitosan grafted N‐isopropylacrylamide (CS‐g‐NIPAM) as the pH and temperature sensitive monomer, with acrylamide as comonomer, N,N′‐methylenebisacrylamide as the crosslinking agent and bovine serum albumin (BSA) as the template protein. The pH and temperature dual‐sensitivity was also investigated. The results showed that the adsorption capacity and imprinting factor improved slowly with increasing incubation pH from 4.6 to 7.0, and then decreased sharply in alkaline conditions due to the reduction of non‐specific binding from electrostatic and hydrogen bonding interactions. Fourier transform infrared spectroscopy, thermogravimetric analysis and transmission electron microscopy were used to characterize the polymers. The as‐prepared SiO2@BSA molecularly imprinted polymers were also found to have high adsorption capacity (119.88 mg g?1) within 2 h, an excellent imprinting factor (α = 2.25), specific selectivity and good reusability. © 2019 Society of Chemical Industry  相似文献   

15.
Chitosan-modified palygorskite (CTS-modified PA) was prepared by surface grafting of PA with chitosan, and the CTS-modified PA was used as an effective adsorbent for the removal of reactive dye. The effects of various experimental parameters such as initial pH, adsorbent dosage, contact time and initial dye concentration on adsorption were investigated. The adsorption behavior of CTS-modified PA showed that the adsorption kinetics and isotherms were in good agreement with the pseudo-second-order equation and the Langmuir equation, and the maximum adsorption capacity of CTS-modified PA calculated by the Langmuir model was 71.38 mg g 1, which was much higher than that of the unmodified PA (6.3 mg g 1).  相似文献   

16.
In this article, morphology, structure and size controllable chitosan microspheres with high mechanical strength were synthesized by microfluidic technology combining chemical crosslinking and used as an adsorbent for methyl orange. The synthesized adsorbents were characterized using scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FTIR), and an Energy Dispersive Spectrometer(EDS). The effect of pH revealed that the adsorption process depended on pH and the pH variation of methyl orange solution after adsorption indicated that adsorption capacity was affected through the associated role of chitosan nature and pH variation. Experimental results suggested that the as-prepared chitosan microspheres were controlled within a narrow size distribution(coefficients of variation is 1.81%), whose adsorption capacity reached to 207 mg·g~(-1) and mechanical strength was suitable to resist forces. In addition, the adsorption isotherm was well fitted with the Langmuir model, and the adsorption kinetic was best described by the pseudo-second-order kinetic model.The high performance microfluidic-synthesized chitosan microspheres have promising potentials in the applications of removing dyes from wastewater.  相似文献   

17.
Poly(GMA/MMA) beads were synthesized from glycidyl methacrylate (GMA) and methyl methacrylate (MMA) in the presence of a cross‐linker (i.e. ethyleneglycol dimethacrylate) (EGDMA) via suspension polymerization. The epoxy groups of the poly(GMA/MMA) beads were converted into amino groups with either ammonia or 1,6‐diaminohexane (i.e. spacer‐arm). An L ‐histidine ligand was then covalently immobilized on the aminated (poly(GMA/MMA)‐AH) and/or the spacer‐arm attached (poly(GMA/MMA)‐SAH) beads using glutaric dialdehyde as a coupling agent. Both affinity adsorbents were used in human serum albumin (HSA) adsorption/desorption studies under defined pH, ionic strength or temperature conditions in a batch reactor. The spacer‐arm attached affinity adsorbent resulted in an increase in the adsorption capacity to HSA when compared to the aminated counterpart (i.e. poly(GMA/MMA)‐AH). The maximum adsorption capacities of the affinity adsorbents were found to be significantly high, i.e. 43.7 and 80.2 mg g?1 (of the beads), while the affinity constants, evaluated by the Langmuir model, were 3.96 × 10?7 and 9.53 × 10?7 mol L?1 for poly(GMA/MMA)‐AH and poly(GMA/MMA)‐SAH, respectively. The adsorption capacities of the affinity adsorbents were decreased for HSA by increasing the ionic strength, adjusted with NaCl. The adsorption kinetics of HSA were analysed by using pseudo‐first and pseudo‐second‐order equations. The second‐order equation fitted well with the experimental data. Copyright © 2005 Society of Chemical Industry  相似文献   

18.
Ion‐imprinted chitosan (CS) microspheres (MIPs) were prepared with Cu(II) as a template and epichlorohydrin as a crosslinker for the selective separation of Cu(II) from aqueous solution. The microspheres showed a higher adsorption capacity and selectivity for the Cu(II) ions than nonimprinted chitosan microspheres (NMIPs) without a template. The results show that the adsorption of Cu(II) on the CS microspheres was affected by the initial pH value, initial Cu(II) concentration, and temperature. The kinetic parameters of the adsorption process indicated that the adsorption followed a second‐order adsorption process. Equilibrium experiments showed very good fits with the Langmuir isotherm equation for the monolayer adsorption process. The maximum sorption capacity calculated from the Langmuir isotherm was 201.66 mg/g for the Cu–MIPs and 189.51 mg/g for the NMIPs; these values were close to the experimental ones. The selectivity coefficients of Cu(II) and other metal ions on the NMIPs indicated a preference for Cu(II). © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
Batch adsorption experiments were carried out to remove heavy metal ions such as Cu (II), Ni (II), Cd (II), and Cr (VI) from single‐metal solutions using a polyaniline/palygorskite (PP) composite. Different parameters affecting the adsorption capacity such as contact time and pH of the solution have been investigated. The structural characteristics of the PP composite were studied in this work. Atomic absorption spectroscopy was used for the measurement of heavy metal contents, and the adsorption capacity (qe) calculated were 114 mg Cu (II) g?1, 84 mg Ni (II) g?1, 56 mg Cd (II) g?1, and 198 mg Cr (VI) g?1 under optimal conditions. The removal of the metal ions from solutions was assigned to chelation, ionic exchange, and electrostatic attraction. Data from this study proved that the novel organic/inorganic composite presents great potential in the recovery and elimination of noble or heavy metal ions from industrial wastewater. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

20.
Amidoximated chitosan‐g‐poly(acrylonitrile) (PAN) copolymer was prepared by a reaction between hydroxylamine and cyano group in chitosan‐g‐PAN copolymer prepared by grafting PAN onto crosslinked chitosan with epychlorohydrine. The adsorption and desorption capacities for heavy metal ions were measured under various conditions. The adsorption capacity of amidoximated chitosan‐g‐PAN copolymer increased with increasing pH values, and was increased for Cu2+ and Pb2+ but a little decreased for Zn2+ and Cd2+ with increasing PAN grafting percentage in amidoximated chitosan‐g‐PAN copolymer. In addition, desorption capacity for all metal ions was increased with increasing pH values in contrast to the adsorption results. Stability constants of amidoximated chitosan‐g‐PAN copolymer were higher for Cu2+ and Pb2+ but lower for Zn2+ and Cd2+ than those of crosslinked chitosan. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 469–476, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号