首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In China, rice‐hull powder is widely used as a fiber component to reinforce polymers because of its ready availability and lower cost compared to wood fibers. However, an issue concerning these composites is their weathering durability. In this study, the effects of two ultraviolet absorbers (UVAs), UV‐326 and UV‐531, on the durability of rice‐hull/high‐density polyethylene (HDPE) composites were evaluated after the samples were exposed to UV‐accelerated weathering tests for up to 2000 h. All of the samples showed significant fading and color changes in exposed areas. X‐ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were used to detect surface chemical changes. The results indicate that surface oxidation commenced immediately within the first 500 h of exposure for all of the samples. However, the control rice‐hull/HDPE composites underwent a greater degree of oxidation than those with the UVAs. Scanning electron microscopy revealed that the rice‐hull/HDPE composites degraded significantly upon accelerated UV aging, with dense cracking on the exposed surface. The UVAs provided effective protection for the rice‐hull/HDPE composites, and UV‐326 had a more positive effect on the color stability than UV‐531. The results reported herein serve to enhance our understanding of the efficiency of UV stabilizers in the protection of rice‐hull/HDPE composites against UV radiation, with a view toward improving their formulation. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
Recycled high‐density polyethylene (RHDPE)/coir fiber (CF)‐reinforced biocomposites were fabricated using melt blending technique in a twin‐screw extruder and the test specimens were prepared in an automatic injection molding machine. Variation in mechanical properties, crystallization behavior, water absorption, and thermal stability with the addition of fly ash cenospheres (FACS) in RHDPE/CF composites were investigated. It was observed that the tensile modulus, flexural strength, flexural modulus, and hardness properties of RHDPE increase with an increase in fiber loading from 10 to 30 wt %. Composites prepared using 30 wt % CF and 1 wt % MA‐g‐HDPE exhibited optimum mechanical performance with an increase in tensile modulus to 217%, flexural strength to 30%, flexural modulus to 97%, and hardness to 27% when compared with the RHDPE matrix. Addition of FACS results in a significant increase in the flexural modulus and hardness of the RHDPE/CF composites. Dynamic mechanical analysis tests of the RHDPE/CF/FACS biocomposites in presence of MA‐g‐HDPE revealed an increase in storage (E′) and loss (E″) modulus with reduction in damping factor (tan δ), confirming a strong influence between the fiber/FACS and MA‐g‐HDPE in the RHDPE matrix. Differential scanning calorimetry, thermogravimetric analysis thermograms also showed improved thermal properties in the composites when compared with RHDPE matrix. The main motivation of this study was to prepare a value added and low‐cost composite material with optimum properties from consumer and industrial wastes as matrix and filler. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42237.  相似文献   

3.
Wood‐plastic composites are being increasingly examined for nonstructural or semistructural building applications. As outdoor applications become more widespread, durability becomes an issue. Ultraviolet exposure can lead to photodegradation, which results in a change in appearance and/or mechanical properties. Photodegradation can be slowed through the addition of photostabilizers. In this study, we examined the performance of wood flour/high‐density polyethylene composites after accelerated weathering. Two 24 factorial experimental designs were used to determine the effects of two hindered amine light stabilizers, an ultraviolet absorber, a colorant, and their interactions on the photostabilization of high‐density polyethyl‐ ene blends and wood flour/high‐density polyethylene composites. Color change and flexural properties were determined after 250, 500, 1000, and 2000 h of accelerated weathering. The results indicate that both the colorant and ultraviolet absorber were more effective photostabilizers for wood flour/high‐density polyethylene composites than the hindered amine light stabilizers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2609–2617, 2003  相似文献   

4.
In this research, the effect of water absorption on the mechanical properties of wood/high‐density polyethylene (HDPE) composites were investigated. HDPE (44005ARPC) was used as the polymer matrix, and spruce sawdust was used as the filler at a maximum loading of 50 wt % of the total weight of each compound. All compounds contained 5 wt % magnesium stearate as a lubricant and 0.5 wt % Irgafos 168 as a heat stabilizer. Four factors in two levels were chosen [talc (filler) at levels of 5 and 15 wt %, zinc borate (fungicide) at levels of 0 and 1 wt %, maleic anhydride polyethylene (coupling agent) at levels of 4 and 6 wt %, and method of mixing (one‐step vs. two‐step mixing)], and eight compounds were prepared with an L8 Taguchi orthogonal array which has 8 combinations of levels. The effects of each factor at two levels on the diffusion constant and the tensile and bending strengths (under wet and dry conditions) were investigated by the analysis of variance of means with 90% confidence. The optimum level for each factor is reported. The results show that there was a linear correlation between the diffusion constant and tensile and bending strengths when the samples were immersed in distilled water. A higher diffusion constant resulted in much lower tensile and bending strengths with immersion in distilled water until saturation was reached. Scanning electron microscopy images confirmed good mixing when two‐steps mixing was used. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
The effect of recycled PP on incompatible blends of virgin polypropylene (PP) and high‐density polyethylene (HDPE) was studied. Recycled PP from urban solid waste was extracted with methyl ethyl ketone and the compatibilizing action of the product before and after extraction was examined. The characterization of the recycled PP was performed by FTIR, NMR, and DSC analyses. Mechanical properties of the blends were evaluated. The results showed partial compatibility of the blend components, reflected in the improvement of the tensile strength and elongation. Best results were achieved by the addition of extracted recycled PP on the 50/50 PP/HDPE blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1305–1311, 2001  相似文献   

6.
Detailed analysis of the effects of recycling process on long‐term water absorption, thickness swelling, and water desorption behavior of natural fiber high‐density polyethylene composites is reported. Composite materials containing polyethylene and wood flour, rice hulls, or bagasse fibers and 2% compatibilizer were produced at constant fiber loading and were exposed to a simulated recycling process consisting of up to five times grinding and reprocessing under controlled conditions. A wide range of analytical methods including water absorption/desorption tests, thickness swelling tests, density measurement, scanning electron microscopy, image analysis, contact angle, fiber length analysis, Fourier transform infrared spectroscopy, and tensile tests were employed to understand the hygroscopic behavior of the recycled composites. Water absorption and thickness swelling behaviors were modeled using existing predictive models and a mathematical model was developed for water desorption at constant temperature. Results indicated that generally the recycled composites had considerably lower water absorption and thickness swellings as compared with the original composites which were attributed to changes in physical and chemical properties of the composites induced by the recycling process. Water desorption was found to be faster after recycling. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
The viability of the thermomechanical recycling of postconsumer milk pouches [a 50 : 50 low‐density polyethylene/linear low‐density polyethylene (LDPE–LLDPE) blend] and their use as polymeric matrices for coir‐fiber‐reinforced composites were investigated. The mechanical, thermal, morphological, and water absorption properties of recycled milk pouch polymer/coir fiber composites with different treated and untreated fiber contents were evaluated and compared with those of virgin LDPE–LLDPE/coir fiber composites. The water absorption of the composites measured at three different temperatures (25, 45, and 75°C) was found to follow Fickian diffusion. The mechanical properties of the composites significantly deteriorated after water absorption. The recycled polymer/coir fiber composites showed inferior mechanical performances and thermooxidative stability (oxidation induction time and oxidation temperature) in comparison with those observed for virgin polymer/fiber composites. However, a small quantity of a coupling agent (2 wt %) significantly improved all the mechanical, thermal, and moisture‐resistance properties of both types of composites. The overall mechanical performances of the composites containing recycled and virgin polymer matrices were correlated by the phase morphology, as observed with scanning electron microscopy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

8.
The tensile strength of notched composites is an important factor for composite structural design. However, no literature is available on the notch sensitivity of self‐reinforced polymer composites. In this study, self‐reinforced recycled poly (ethylene terephthalate) (srrPET) composites were produced by film stacking from fabrics composed of double covered uncommingled yarns (DCUY). Composite specimens were subjected to uniaxial tensile, flexural, and Izod impact tests and the related results compared with earlier ones achieved on srPET composites reinforced with nonrecycled technical PET fibers. Effects of open circular holes on the tensile strength of srrPETs were studied at various width‐to‐hole diameter (W/D) ratios of the specimens. In the open hole tensile (OHT) measurements bilinear (yielding followed by post‐yield hardening) stress–strain curves were recorded. The srrPET composites had extremely high yield strength retention (up to 142%) and high breaking strength retention (up to 81%) due to the superior ductile nature of the srrPETs, which induces plastic yielding near the hole thereby reducing the stress concentration effect. The results proved that srrPET composites are tough, ductile notch‐insensitive materials. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43682.  相似文献   

9.
We performed surface modification of ultra‐high‐molecular‐weight polyethylene (UHMWPE) through chromic acid etching, with the aim of improving the performance of its composites with poly(ethylene terephthalate) (PET) fibers. In this article, we report on the morphology and physicomechanical and tribological properties of modified UHMWPE/PET composites. Composites containing chemically modified UHMWPE had higher impact properties than those based on unmodified UHMWPE because of improved interfacial bonding between the polymer matrix and the fibers and better dispersion of the fibers within the modified UHMWPE matrix. Chemical modification of UHMWPE before the introduction of PET fibers resulted in composites exhibiting improved wear resistance compared to the base material and compared to unmodified UHMWPE/PET composites. On the basis of the morphological studies of worn samples, microploughing and fatigue failure associated with microcracking were identified as the principle wear mechanisms. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

10.
The mechanical properties and water absorption of low‐density polyethylene/sawdust composites were investigated. The relationship between the filler content and the composite properties was also studied. Different degrees of esterification of the sawdust with maleic anhydride were obtained with different reaction times. The experimental results demonstrated that the treatment of sawdust by maleic anhydride enhanced the tensile and flexural strengths. The water absorption for maleic anhydride treated sawdust indicated that it was more hydrophobic than untreated sawdust. The effects of the addition of benzoyl peroxide during the preparation of composite samples on the water absorption and mechanical properties were also evaluated. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
The main objective of this research was to investigate the effect on the thermal and mechanical properties of the addition of two different compatibilizing agents, malefic anhydride‐grafted polyethylene (PE) [synthesized in a solution state (MAPE) and commercial (XA255)], to olive husk flour, high‐density polyethylene (HDPE) composites. The composites contain 30 wt % of olive husk flour and a variable proportion of compatibilizer (3, 5, and 7 wt %). The grafting reaction was followed by Fourier transform infrared, and the grafting degree was evaluated by means of titration. The effect of grafting on the thermal properties of MAPE was observed by ATG/DTG. The mechanical and thermal properties of the composite were investigated. A morphological study of the composite reveals that there is a positive effect of compatibilizing agent on interfacial bonding. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
Understanding the sequence of reactions that occur in ultra‐high‐molecular‐weight polyethylene (UHMWPE) following 60Co γ irradiation has been the focus of numerous experimental studies. In the study reported here, we have incorporated recent experimental findings into a mathematical model for UHMWPE oxidation. Simulation results for shelf aging and accelerated aging are presented. It is shown that very reasonable simulations of shelf‐aging and accelerated‐aging data can be obtained. It is also shown that simulations of shelf aging in reduced oxygen environments predict that the subsurface peaks of ketones will be shifted to the exterior surface. In vivo aging can be simulated if we assume that the oxygen level in the synovial fluid is about one‐eighth that of atmospheric levels. Some reduced irradiation doses are predicted to significantly reduce the ketone formation for shelf‐aging periods of up to 10 years. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 814–826, 2003  相似文献   

13.
Freeze and freeze‐thaw durability characteristics of fiber reinforced polymer (FRP) composites, especially in the presence of moisture, need to be investigated prior to the widespread implementation of these materials in civil, polar, and offshore structural components and systems. The hygrothermal degradation characteristics of an ambient cure E‐glass/vinylester system due to exposure to ?10°C conditions and conditions of freeze‐thaw, including in the presence of water and seawater, was investigated. Changes in mechanical characteristics such as strength and modulus, and thermo‐mechanical dynamic characteristics such as storage and loss moduli, and glass‐transition temperature were measured, and short‐term effects of environmental exposure were assessed. It is seen that the presence of moisture/solution has a significant effect; both in terms of physical and chemical aging, and in terms of microcracking and fiber–matrix debond initiation. Results indicate the critical importance of cure characteristics and diffusion related phenomena. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2255–2260, 2002  相似文献   

14.
A linear low‐density polyethylene (LLDPE) matrix was modified with an organic peroxide and by a reaction with maleic anhydride (MAn) and was simultaneously compounded with untreated wood flour in a twin‐screw extruder. The thermal and mechanical properties of the modified LLDPE and the resulting composites were evaluated. The degree of crystallinity was reduced in the modified LLDPE, but it increased with the addition of wood flour for the formation of the composites. Significant improvements in the tensile strength, ductility, and creep resistance were obtained for the MAn‐modified composites. This enhancement in the mechanical behavior could be attributed to an improvement in the compatibility between the filler and the matrix. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2775–2784, 2003  相似文献   

15.
The recycling process of postconsumer aseptic packaging composed of paper, low‐density polyethylene (LDPE), and aluminum consists of recovering paper, the major component, through centrifugation. The remaining mixture of LDPE and aluminum, a recycled composite called PEAL, offers an interesting combination of properties, especially because of the presence of a small amount of poly(ethylene‐co‐methacrylic acid (EMAA). In this work, this composite is characterized, and the properties are compared with those of pure LDPE and EMAA, the polymers that constitute the recycled material. PEAL is around 15% aluminum particles with different shapes and sizes. The composite presents higher thermooxidative stability, higher crystallinity, lower impact resistance, and higher tensile strength than the other olefin polymers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3183–3191, 2006  相似文献   

16.
A commercial talc‐filled polypropylene/ethylene‐propylene‐diene terpolymer composite was repeatedly injection molded up to five cycles to study the effects of reprocessing on the structure, morphology, and mechanical properties. Reprocessing did not change either the chemical structure or the thermal behavior of the composite, but led to a slight molecular weight reduction, due to shear–stress‐induced chain scission. Talc and ethylene‐propylene‐diene terpolymer content remained unchanged with reprocessing, whereas size distribution slightly decreased. Young's modulus, yield stress, and Charpy impact strength of the composite did not significantly change even after five cycles, but deformation at break continuously decreased, and it was attributed to the slight molecular weight, talc, and rubber particle size reduction. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
The effects of the type of coupling agent and virgin polypropylene (PP) content on the mechanical properties and water absorption behavior of recycled low‐density polyethylene/wood flour (WF) composites were investigated. The fractured surfaces of these recycled wood/plastic composites (rWPCs) were examined to gain insight into the distribution and dispersion of WF within the polymer matrix. The results indicate that the use of 100% recycled polymer led to inferior mechanical properties and to a greater degree of moisture absorption and swelling when compared to recycled polymer–virgin PP wood/plastic composites. This could have been related to the poor melt strength and inferior processability of the recycled polymer. The extent of improvement of the mechanical properties depended not only on the virgin PP content in the matrix but also on the presence of maleic anhydride (MA) modified PP as the coupling agent. Higher concentrations of MA group were beneficial; this improvement was attributed to increased chemical bonding (ester linkages) between hydroxyl moieties in WF and anhydride moieties in the coupling agent. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
Silanization and esterification are strategies used to treat wood flour (WF) to produce surface functionalized hydrophobic WF leading to an improvement in dispersion and compatibility between wood phase and polymer phase. Silanization involves functionalization of alkyl groups by coupling trimethoxy (propyl) silane (MPS), and esterification functionalizes WF with ester groups, using acetic anhydride (Ac). Modified WF was incorporated into recycled high-density polyethylene (HDPE) to form reHDPE/mod-WF composite system. Both modifications produced highly hydrophobic WF surfaces which improved the dispersion in the reHDPE matrix; resulting in a significant difference in impact strength, specifically at 20 wt% filler, from 74.5 Jm−1 to 146.3 Jm−1 and 113.5 Jm−1, that is, up to 96% and 52% for MPS-WF and Ac-WF, respectively. However, filler agglomeration higher than 20 wt% reduces the composite impact strength. The results herein demonstrate that alkyl-functionalized WF show excellent dispersion in the reHDPE system and is the preferred technique to improve system mechanical resilience as compared to esterification.  相似文献   

19.
Hemp fibers and particles, with different sizes and contents, were used to make hybrid composites based on recycled polypropylene (PP). In particular, the effect of maleated polypropylene (MAPP) addition on the morphology and mechanical properties is reported. The results show that better adhesion is obtained with MAPP addition. In general, fiber content and size had a substantial effect on the tensile, flexural, torsion, and impact properties of the resulting composites. Although, adding MAPP to the samples improved the impact strength of the composites, the values were always lower than neat PP. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
Highly filled wood flour/recycled high density polyethylene (WF/RHDPE) composites were directly prepared by in situ reactive extrusion using a twin‐screw/single‐screw extruder system. The effects of dicumyl peroxide (DCP) content on extrusion pressure, rheological behavior, mechanical properties, fractured surface morphology of the composites, and melting temperature of RHDPE in the composites were investigated. The extrusion pressure and torque of WF/RHDPE composite melt increased with DCP content. Mechanical property tests and scanning electron microscopy analysis results confirmed that the interfacial interaction of the composites was improved by in situ reaction. The composites show lower melting peak temperature (Tm) than RHDPE. The cooling in profile extrusion shortened the crystallization time, resulting in decrease of crystalline order of RHDPE in the composites. There are no noticeable changes of Tm values with increasing DCP content. Comparative study on composites with maleic anhydride grafted polyethylene as compatibilizer demonstrated that mechanochemical treatment with DCP and maleic anhydride was an effective method to improve interfacial adhesion for WF/RHDPE composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号