首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of composite fibers based on poly(ether ether ketone)s (PEEK) and a thermotropic liquid crystalline poly(ether ketone)arylates (PEKAR) have been prepared by melt spinning. The structure, compatibility, and properties of these composite fibers were investigated in detail by rheological measurements, differential scanning calorimetry, thermogravimetric analysis, wide‐angle X‐ray diffraction, scanning electron microscopy, orientation degree test, and mechanical properties test. The results showed that the addition of PEKAR could reduce the apparent melt viscosity of the blends obviously, which is beneficial in improving the processibility of PEEK at a relatively low temperature. After adding 1 wt % PEKAR to PEEK, the tensile strength of the post‐treatment fiber improved by 8.8%, whereas the crystallinity of the as‐spun fiber increased from 21.76% to 31.51%, and the orientation degree also increased with the addition of PEKAR. The result of morphology research suggested that PEKAR had a good compatibility with PEEK resin. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40595.  相似文献   

2.
A series of thio‐containing poly(ether ether ketone) (PEESK) polymers was synthesized by the introduction of thio groups from 4,4′ thiodiphenol (TDP) into the poly(ether ether ketone) (PEEK) structure via reaction between the phenol and aromatic fluoride groups. The effect of the thio groups on the properties of the PEESK materials was investigated. Differential scanning calorimetry (DSC) analysis and X‐ray diffraction (XRD) patterns show a depression in the crystallinity of the PEESKs with incorporation of the content of thio groups in the backbones. The crystalline structure was identified as an orthorhombic structure with lattice constants of a = 7.52 Å, b = 5.86 Å and c = 10.24 Å for all crystallizable PEESKs. The crystalline structures of the thio‐containing PEEK polymers were the same as that of the neat PEEK, which means the thio‐containing block in the whole thio‐containing PEEK molecule is almost excluded from the crystalline structure and the crystals are completely formed by ‘non‐thio’ blocks only. Due to the glass transition temperature (Tg) and melting temperature (Tm) depression with increase in the TDP content in the reaction system, the processability of the resultant thio‐containing PEEKs could be effectively improved. Copyright © 2004 Society of Chemical Industry  相似文献   

3.
High‐performance poly(ether ether ketone) (PEEK) fibers were prepared by melt‐spinning in the presence of thermotropic liquid crystalline poly(aryl ether ketone) copolymer (FPAEKLCP). The rheological and mechanical properties, birefringence, orientation, and crystallization of the resulting PEEK/FPAEKLCP fibers were characterized by using a melt flow indexer, capillary rheometer, single fiber electronic tensile strength tester, polarized light microscopy (PLM), and wide‐angle X‐ray diffraction (WAXD), respectively. The results indicate that the melt viscosity of PEEK significantly reduced by introducing FPAEKLCP, followed by the improvements in the spinnability and the quality of as‐spun fibers. The tensile properties of PEEK/FPAEKLCP fibers mainly depend on the content of FPAEKLCP, drawing temperature, drawing ratio, and annealing processes. Moreover, the tensile strength and modulus of PEEK/FPAEKLCP fibers are obviously higher than those of neat PEEK fibers under the same processing conditions. This should be attributed to an enhancement in the orientation and crystallization of PEEK compounded with FPAEKLCP. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1406‐1414, 2013  相似文献   

4.
To improve the processability of the poly(p‐hydroxybenzoic acid), copolyarylates containing m‐aryl ether units were synthesized using p‐acetoxybenzoic acid, 1,4‐diacetoxybenzene and 1,3‐bis(4'‐carboxyphenoxy)benzene by melt transesterification reaction. The structure and properties of these polyarylates were characterized using infrared spectra, differential scanning calorimetry, thermogravimetric analyses, wide‐angle X‐ray diffraction and polarized optical microscopy etc. The results showed that all polyarylates were semicrystalline materials and could form a thermotropic liquid crystalline intermediate state. As the content of aryl ether units increased, the crystallization and melting temperatures of the polyarylate decreased; meanwhile, the crystalline ability became lower. The introduction of the aryl ether could restrain the formation of a liquid crystalline structure and reduce the thermal stability to some extent. After solid state polymerization (SSP), the intrinsic viscosity, melting temperature, crystallinity and thermal stability of the polyarylate increased while the melting range narrowed. However, the SSP reaction might be accompanied by degradation and crosslinking.  相似文献   

5.
A new monomer, 1,4‐bis(4‐phenoxybenzoyl)naphthalene (BPOBN), was conveniently synthesized via a simple synthetic procedure from readily available materials. A series of novel copolymers of poly(ether ketone ether ketone ketone) and poly(ether ketone ketone ether ketone ketone) containing 1,4‐naphthylene moieties were prepared by the Friedel‐Crafts acylation solution copolycondensation of terephthaloyl chloride (TPC) with a mixture of BPOBN and 4,4′‐diphenoxybenzophenone (DPOBPN), over a wide range of BPOBN/DPOBPN molar ratios, in the presence of anhydrous AlCl3 and N‐methylpyrrolidone in 1,2‐dichloroethane. The copolymers with 10–40% BPOBN are semicrystalline and had remarkably increased Tgs over the conventional PEEK and PEKK due to the incorporation of 1,4‐naphthylene moieties in the main chains. The copolymers with 30–40 mol% BPOBN had not only high Tgs of 176–177°C, but also moderate Tms of 332–338°C, which are suitable for the melt processing. These polymers had tensile strengths of 101.5–104.7 MPa, Young's moduli of 2.49–2.65 GPa, and elongations at break of 13.3–15.7% and exhibited high thermal stability and excellent resistance to organic solvents. POLYM. ENG. SCI., 56:566–572, 2016. © 2016 Society of Plastics Engineers  相似文献   

6.
New monomers, 4,4′‐bis(4‐phenoxybenzoyl)diphenyl (BPOBDP) and N,N′‐bis(4‐phenoxybenzoyl)?4,4′‐diaminodiphenyl ether (BPBDAE), were conveniently synthesized via simple synthetic procedures from readily available materials. Novel copolymers of poly(ether ketone diphenyl ketone ether ketone ketone) (PEKDKEKK) and poly(ether amide ether amide ether ketone ketone) (PEAEAEKK) were synthesized by electrophilic Friedel‐Crafts solution copolycondensation of isophthaloyl chloride (IPC) with a mixture of BPOBDP and BPBDAE, over a wide range of BPOBDP/BPBDAE molar ratios, in the presence of anhydrous AlCl3 and N‐methylpyrrolidone (NMP) in 1,2‐dichloroethane (DCE). The copolymers obtained were characterized by different physico‐chemical techniques. The copolymers with 10–40 mol% BPBDAE are semicrystalline and had remarkably increased Tgs over commercially available PEEK and PEKK due to the incorporation of amide and diphenyl linkages in the main chains. The copolymers IV and V with 30–40 mol% BPBDAE had not only high Tgs of 185–188°C, but also moderate Tms of 326–330°C, having good potential for the melt processing. The copolymers IV and V had tensile strengths of 101.7–102.3 MPa, Young's moduli of 2.19–2.42 GPa, and elongations at break of 13.2–16.6% and exhibited high thermal stability and excellent resistance to organic solvents. POLYM. ENG. SCI., 54:1757–1764, 2014. © 2013 Society of Plastics Engineers  相似文献   

7.
The synthesis of novel poly(ether ether ketone ketone)s containing a lateral group via the random copolymerization of 4,4′‐biphenol, tert‐butylhydroquinone and 1,4‐bis(p‐fluorobenzoyl)benzene is described. The copolymers were characterized by differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD) and polarized optical microscopy (POM) observation. The results showed that the thermotropic liquid‐crystalline properties were achieved in the copolymers containing 30 mol% and 50 mol% tert‐butylhydroquinone, which have relatively lower melting temperatures due to the copolymerization effect. Both the crystalline–liquid‐crystalline transition (Tm) and the liquid‐crystalline–isotropic phase transition (Ti) were observable in the DSC thermograms, while the biphenol‐based poly(aryl ether ketone) has only one melting transition. The hydroquinone‐based polymer was shown to be amorphous. Thermogravimetric analysis (TGA) results showed that these copolymers are all high‐temperature resistant with higher glass transition temperature between 147 and 149 °C, and higher decomposition temperature Td in the range 480–520 °C. © 2000 Society of Chemical Industry  相似文献   

8.
Two monomers, 4,4′‐bis(4‐phenoxybenzoyl)biphenyl (BPOBBP) and 4,4′‐diphenoxydiphenyl sulfone (DPODPS), were conveniently synthesized via simple synthetic procedures from readily available materials. A series of novel poly(aryl ether ketone)s containing both biphenylene moieties and sulfone linkages in the main chain were synthesized by the modified electrophilic Friedel‐Crafts acylation copolycondensation of isophthaloyl chloride (IPC) with a mixture of BPOBBP and DPODPS, over a wide range of BPOBBP/DPODPS molar ratios. The resulting polymers were characterized by Fourier transform infrared spectroscopy (FT‐IR), wide‐angle X‐ray diffraction (WAXD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA), etc. The results indicated that the copolymers with 30 to 35 mol% DPODPS were semicrystalline and had remarkably increased glass transition temperatures (Tgs) over the conventional poly(ether ether ketone) (PEEK) and poly(ether ketone ketone) (PEKK) due to the incorporation of biphenylene units and sulfone linkages in the main chain. The copolymers with 30 to 35 mol% DPODPS had not only high Tgs of 176 to 177°C, but also moderate melting temperatures (Tms) of 334 to 337°C, having good potential for the melt processing. The semicrystalline copolymers II to V had tensile strengths of 99.8 to 103.1 MPa, Young's moduli of 2.26 to 2.79 GPa, and elongations at break of 16.8 to 26.5% and exhibited outstanding thermal stability and good resistance to organic solvents. POLYM. ENG. SCI., 55:2140–2147, 2015. © 2015 Society of Plastics Engineers  相似文献   

9.
Poly(aryl ether ketone)s (PAEKs) are a class of high‐performance engineering thermoplastics known for their excellent combination of chemical, physical and mechanical properties, and the synthesis of semicrystalline PAEKs with increased glass transition temperatures (Tg) is of much interest. In the work reported, a series of novel copolymers of poly(ether ketone ketone) (PEKK) and poly(ether amide ether amide ether ketone ketone) were synthesized by electrophilic solution polycondensation of terephthaloyl chloride with a mixture of diphenyl ether and N,N′‐bis(4‐phenoxybenzoyl)‐4,4′‐diaminodiphenyl ether (BPBDAE) under mild conditions. The copolymers obtained were characterized using various physicochemical techniques. The copolymers with 10–35 mol% BPBDAE are semicrystalline and have markedly increased Tg over commercially available poly(ether ether ketone) and PEKK due to the incorporation of amide linkages in the main chain. The copolymers with 30–35 mol% BPBDAE not only have high Tg of 178–186 °C, but also moderate melting temperatures of 335–339 °C, having good potential for melt processing. The copolymers with 30–35 mol% BPBDAE have tensile strengths of 102.4–103.8 MPa, Young's moduli of 2.33–2.45 GPa and elongations at break of 11.7–13.2%, and exhibit high thermal stability and good resistance to organic solvents. Copyright © 2010 Society of Chemical Industry  相似文献   

10.
The dynamic crystallization and subsequent melting behaviour of poly(aryl ether ether ketone), PEEK, and its blends with a thermotropic liquid crystalline polymer, Vectra®, have been studied using differential scanning calorimetry, optical microscopy and wide‐angle and small‐angle X‐ray diffraction (WAXS and SAXS) techniques in a wide compositional range. Differences in crystallization rates and crystallinities were related to the structural and morphological characteristics of the blends measured by simultaneous real‐time WAXS and SAXS experiments using synchrotron radiation and optical microscopy. The crystallization process of PEEK in the blends takes place in the presence of the nematic phase of Vectra and leads to the formation of two different crystalline families. The addition of Vectra reduces the crystallization rate of PEEK, depending on composition, and more perfect crystals are formed. An increase in the long period of PEEK during heating was generally observed in the blends at all cooling rates. Copyright © 2003 Society of Chemical Industry  相似文献   

11.
Four new poly(imide siloxane) copolymers were prepared by a one‐pot solution imidization method at a reaction temperature of 180°C in ortho‐dichlorobenzene as a solvent. The polymers were made through the reaction of o‐diphthaleic anhydride with four different diamines—4,4′‐bis(p‐aminophenoxy‐3,3″‐trifluoromethyl) terphenyl, 4,4′‐bis(3″‐trifluoromethyl‐p‐aminobiphenyl ether)biphenyl, 2,6‐bis(3′‐trifluoromethyl‐p‐aminobiphenyl ether)pyridine, and 2,5‐bis(3′‐trifluoromethyl‐p‐aminobiphenylether)thiopene—and aminopropyl‐terminated poly dimethylsiloxane as a comonomer. The polymers were named 1a , 1b , 1c , and 1d , respectively. The synthesized polymers showed good solubility in different organic solvents. The resulting polymers were well characterized with gel permeation chromatography, IR, and NMR techniques. 1H‐NMR indicated that the siloxane loading was about 36%, although 40 wt % was attempted. 29Si‐NMR confirmed that the low siloxane incorporation was due to a disproportionation reaction of the siloxane chain that resulted in a lowering of the siloxane block length. The films of these polymers showed low water absorption of 0.02% and a low dielectric constant of 2.38 at 1 MHz. These polyimides showed good thermal stability with decomposition temperatures (5% weight loss) up to 460°C in nitrogen. Transparent, thin films of these poly(imide siloxane)s exhibited tensile strengths up to 30 MPa and elongations at break up to 103%, which depended on the structure of the repeating unit. The rheological properties showed ease of processability for these polymers with no change in the melt viscosity with the temperature. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Poly(ether ether ketone)s and poly(ether ether ketone ketone)s containing pendant pentadecyl chains were synthesized by polycondensation of each of the two bisphenol monomers viz, 1,1,1‐[bis(4‐hydroxyphenyl)‐4′‐pentadecylphenyl]ethane and 1,1‐bis(4‐hydroxyphenyl)‐3‐pentadecyl cyclohexane with activated aromatic dihalides namely, 4,4′‐difluorobenzophenone, and 1,3‐bis(4‐fluorobenzoyl)benzene in a solvent mixture of N,N‐dimethylacetamide and toluene, in the presence of anhydrous potassium carbonate. Polymers were isolated as white fibrous materials with inherent viscosities and number average molecular weights in the range 0.70–1.27 dL g?1 and 76,620–1,36,720, respectively. Poly(ether ether ketone)s and poly(ether ether ketone ketone)s were found to be soluble at room temperature in organic solvents such as chloroform, dichloromethane, tetrahydrofuran, and pyridine and could be cast into tough, transparent, and flexible films from their solutions in chloroform. Wide angle X‐ray diffraction patterns exhibited a broad halo at around 2θ = ~ 19° indicating that the polymers containing pentadecyl chains were amorphous in nature. In the small‐angle region, diffuse reflections of a typically layered structures resulting from the packing of pentadecyl side chains were observed. The temperature at 10% weight loss, obtained from TG curves, for poly(ether ether ketone)s and poly(ether ether ketone ketone)s were in the range 416–459°C, indicating their good thermal stability. A substantial drop in glass transition temperatures (68–78°C) was observed for poly(ether ether ketone)s and poly(ether ether ketone ketone)s due to “internal plasticization” effect of flexible pendant pentadecyl chains. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
A new monomer containing sulfone and imide linkages, bis{4-[4-(p-phenoxyphenylsulfonylphenoxy)benzoyl]-1,2-benzenedioyl}-N,N,N′,N′-4,4′-diaminodiphenyl ether (BPSPBDADPE), was prepared by the Friedel–Crafts reaction of bis(4-chloroformyl-1,2-benzenedioyl)-N,N,N′,N′-4,4′-diaminodiphenyl ether with 4,4′-diphenoxydiphenyl sulfone. Novel copolymers of poly(ether ketone ketone) and poly(ether ketone sulfone imide) were synthesized by electrophilic Friedel–Crafts solution copolycondensation of terephthaloyl chloride with a mixture of DPE and BPSPBDADPE. The polymers were characterized by different physico-chemical techniques. The polymers with 10–25?mol% BPSPBDADPE are semicrystalline and had increased T gs over commercially available PEEK and PEKK (70/30) due to the incorporation of sulfone and imide linkages in the main chains. The polymer IV with 25?mol% BPSPBDADPE had not only high T g of 194?°C but also moderate T m of 338?°C, having good potential for melt processing and exhibited high thermal stability and good resistance to common organic solvents.  相似文献   

14.
The wollastonite was grafted with different silane coupling agents, which could improve interface adhesion. Wollastonite and modified wollastonite‐reinforced poly(ether ether ketone) (PEEK) composites were prepared by melt blending. The mechanical properties, rheology behavior, and thermal properties of the composites were investigated. The modified wollastonite‐reinforced PEEK composites exhibited better mechanical properties than the unmodified wollastonite‐reinforced PEEK composites based on good interfacial adhesion. The composites had lower activation volume and complex shear viscosity. Furthermore, the modified wollastonite‐reinforced PEEK composites had higher crystallization peak temperature (Tc) and crystalline fraction (χc) compared with the unmodified wollastonite‐reinforced PEEK composites. This study shows that the traditional silane coupling agents could effectively improve the performance of PEEK composites. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

15.
Interest in developing high-performance blends for niche applications has grown significantly in efforts to meet ever-increasing harsh environment demands. In this work, four model poly(aryl-ether-ketone)/polybenzimidazole (PAEK/PBI) blends were chosen to study the influence of premixing methods, processing, and matrix polymers, on their mechanical properties. Among the model poly(ether ether ketone) (PEEK) and PBI blends, mechanical properties are greatly enhanced by melt premixing. The molding process mainly affects the matrix crystallinity, which in turn greatly influences fracture toughness of the blend. Poly(ether ketone ketone) (PEKK) and PBI blend exhibits a slightly lower tensile strength and fracture toughness than PEEK/PBI due to the differences in inherent properties of PEEK and PEKK matrices and their interfacial interaction with PBI. The processing−structure–property relationship of PAEK/PBI blends is established to help guide optimal design of high-performance polymer blends for structural applications. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48966.  相似文献   

16.
Blends of poly(phenylene sulfide) (PPS) and recycled poly(ether ether ketone) (r‐PEEK) were prepared using a twin‐screw extruder. The carbon nanotube (CNT) added to the blends not only improved the compatibility of the two polymers, but also affected the morphology of the immiscible PPS/r‐PEEK blends. R‐PEEK always forms the dispersed phase and PPS the continuous phase in such blends. In the composite, CNT particles were observed in the PPS phase, mostly distributes in the interface between PPS and PEEK. The results show that r‐PEEK improves the impact and tensile strength of PPS, but does not provide nucleation effect on PPS. However, CNT improved the flexural modulus of PPS/r‐PEEK blends and promoted the crystallization of r‐PEEK rather than that of PPS. The prepared PPS/r‐PEEK blends provided larger electrical conductivity than neat polymers. Adding 20 wt % CNT to blend resulted in composite with the minimum volume resistivity, a reduction of four orders of magnitude, compared with that of the neat blend. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42497.  相似文献   

17.
2,6‐Bis(β‐naphthoxy)benzonitrile (BNOBN) was synthesized by reaction of β‐naphthol with 2,6‐difluorobenzonitrile in N‐methyl‐2‐pyrrolidone (NMP) in the presence of KOH and K2CO3. Poly(ether ketone ether ketone ketone)(PEKEKK) /poly(ether ether ketone ketone) (PEEKK) copolymers containing naphthalene and pendant cyano groups were obtained by electrophilic Friedel‐Crafts polycondensation of terephthaloyl chloride (TPC) with varying mole proportions of 4,4′‐diphenoxybenzophenone (DPOBP) and 2,6‐bis(β‐naphthoxy)benzonitrile (BNOBN) using 1,2‐dichloroethane (DCE) as solvent and NMP as Lewis base in the presence of anhydrous AlCl3. The resulting polymers were characterized by various analytical techniques, such as FTIR, DSC, TG, and WAXD. The results indicated that the crystallinity and melting temperature of the polymers decreased with increase in concentration of the BNOBN units in the polymer, the glass transition temperature of the polymers increased with increase in concentration of the BNOBN units in the polymer. Thermogravimetric studies showed that all the polymers were stable up to 536°C in N2 atmosphere. The copolymers have good resistance to acidity, alkali, and organic solvents. Because of the melting temperature (Tm) depression with increase in the BNOBN content in the reaction system, the processability of the resultant coplymers could be effectively improved. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
A new monomer containing imide linkages, bis[4-(p-phenoxybenzoyl)-1,2-benzenedioyl]-N,N,N′,N′-4,4′-diaminodiphenyl ether (BPBDADPE), was prepared by the Friedel–Crafts reaction of bis(4-chloroformyl-1,2-benzenedioyl)-N,N,N′,N′-4,4′-diaminodiphenyl ether (BCBDADPE) with diphenyl ether (DPE). Novel poly(aryl ether ketone)s containing imide linkages in the main chains (PEK-I) were synthesized by electrophilic Friedel–Crafts solution copolycondensation of terephthaloyl chloride (TPC) with a mixture of DPE and BPBDADPE. The polymers were characterized by different physico-chemical techniques. The polymers with 10–40 mol% BPBDADPE are semicrystalline and had increased T gs over commercially available poly(ether ether ketone) (PEEK) and poly(ether ketone ketone) (PEKK) (70/30) due to the incorporation of imide linkages in the main chains. The polymers IV and V with 30–40 mol% BPBDADPE had not only high T gs of 182–183 °C, but also moderate T ms of 341–343 °C, having good potential for melt processing and exhibited high thermal stability and good resistance to common organic solvents.  相似文献   

19.
Antiwear composites with extraordinary tribological performances and good mechanical/thermal properties were developed by the dispersion of poly(ether sulfone) (PES) wrapped graphite nanosheets (GNSs) inside a poly(ether ether ketone) (PEEK) matrix via melt blending. The tribological behaviors and the mechanical/thermal properties of the composites were carefully investigated. Compared with pure PEEK and PEEK/GNS composites, the PEEK/wrapped GNS composites exhibited considerable enhancements in those performances; these were attributed to the eliminated layer of PES; this elimination not only eliminated the GNS aggregation inside the PEEK matrix for homogeneous distribution inside the PEEK matrix but also enhanced the interfacial adhesion between the PEEK and wrapped GNSs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41728.  相似文献   

20.
High‐strength poly(ether ether ketone) (PEEK) films were prepared through melt extrusion followed by stretching. The tensile strength, orientation, and crystallization behaviors of PEEK films were characterized by universal testing machine, thermomechanical analysis, wide‐angle X‐ray diffraction, and differential scanning calorimetry. The results indicated that the tensile strength of PEEK films mainly depended on the stretching rate (ν), stretching temperature (T), and stretching ratio (λL). Moreover, the tensile strength of the stretched PEEK film (333 MPa) was almost four times higher than that of the unstretched PEEK film (87 MPa) under an optimized condition. This is attributed to a synergistic effect of orientation and crystallization in the stretching process, and the influence of orientation is stronger than that of the crystallization on the improvement of the tensile strength of PEEK films. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40172.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号