首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, an alternative Pd activation process was developed for electroless Ni plating on polyester fabric modified with a self‐assembled monolayer (SAM) of 3‐aminopropyltrimethoxysilane (APTMS). The presence of a highly oriented amino‐terminated SAM and the formation of Pd‐activated APTMS were demonstrated by X‐ray photoelectron spectroscopy analysis. After activation, electroless Ni plating was successfully initiated, and the Ni coating was deposited onto the surface of the polyester fibers. The resulting Ni coating was examined by scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, and X‐ray diffraction. The electromagnetic interference (EMI) shielding effectiveness (SE) and adhesive strength of the Ni‐plated polyester fabric were evaluated. On the basis of the experimental results, the Ni coating produced with a Pd‐activated SAM was uniform and dense. As the Ni weight on the treated fabric was 32 g/m2, the EMI SE of the Ni‐plated polyester fabric modified with APTMS obtained was more than 30 dB at frequencies that ranged from 2 to 18 GHz. Compared with the conventional two‐step activation method, Ni coating on the Pd‐activated polyester fabric modified with APTMS improved the coating adherence stability. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
In this study, colored cotton fabric with special functions, including self‐cleaning, anti‐bacterial, and ultraviolet (UV) blocking were prepared by applying zinc oxide as a photocatalyst and using silver nanoparticles as both a novel class of colorant for coloration and an agent capable of modifying the zinc oxide nanoparticles. The homogenous distribution of Ag/ZnO nanocomposite on the fibre surface was confirmed by field emission scanning electron microscopy (FE‐SEM), Energy‐dispersive X‐ray spectroscopy (EDS) and X‐ray mapping. X‐ray diffraction patterns showed the presence of the nanocomposite on the treated cotton fabric. The results indicated that adding silver nanoparticles to zinc oxide led to better self‐cleaning properties, even the photocatalytic activity of ZnO had no negative effect on fabric colour. Moreover, this process imparted proper anti‐bacterial properties and UV‐blocking activity to cotton fabrics.  相似文献   

3.
In this study, the structural, electrical, and electromagnetic properties of cotton fabrics coated with polyaniline (PAni) and polypyrrole (PPy) were investigated and compared. For the aims, anilin and pyrrole were used as monomers, and in situ polymerization on cotton fabric by chemical oxidative polymerization was performed. After production, the structural properties of the fabrics were determined with Fourier transform infrared spectroscopy and X‐ray diffraction. In addition, ultraviolet (UV) permeability, tensile strength, colorfastness, and electrical and electromagnetic measurements of the fabric samples were carried out. The resistance values of the cotton fabrics coated with PAni and PPy were found to be 350 and 512 Ω, respectively. The average electromagnetic shielding efficiency and average absorption values of the cotton fabrics coated with PAni were determined to be 3.8 dB and 48%, respectively, and these values for the cotton fabrics coated with PPy were 6 dB and 50%, respectively. Consequently, a significant difference was not observed between the resistance values and electromagnetic parameters of the fabrics coated with PAni and PPy, although the intact textile characteristics of the fabric coated with PPy were protected and improved, whereas the characteristics of the fabric coated with PAni were inferior. Moreover, we first report that the fabrics coated with conductive polymers had excellent UV‐protection properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
A silver/nylon 6,6 nanocomposite containing 1 wt % metallic silver has been produced from an aqueous solution of silver nitrate in the presence of ammonia and ethylene glycol by an ultrasound‐assisted reduction method. The structure and properties of nylon 6,6 coated with silver have been characterized with X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, energy‐dispersive X‐ray, X‐ray photoelectron spectroscopy, Raman spectroscopy, and diffused reflection spectroscopy measurements. The nanocrystals of pure silver, 50–100 nm in size, are finely dispersed on the polymer surface without damaging the nylon 6,6 structure. This silver–nylon nanocomposite is stable to many washing cycles and thus can be used as a master batch for the production of nylon yarn by melting and spinning processes. The fabric knitted from this yarn has shown excellent antimicrobial properties. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1423–1430, 2007  相似文献   

5.
Silver nanoparticles were coated onto cotton fabrics with 3‐mercaptopropyltrimethoxysilane (3‐MPTMS). The coating process was accomplished by soaking the cotton fabrics into silver colloid/3‐MPTMS solution at 43°C for 90 min. The coated fabrics were characterized by scanning electron microscopy (SEM), X‐ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). SEM images showed a layer of silver nanoparticles and 3‐MPTMS on cotton. The XPS data showed that distinguishable binding energy peaks of Ag 3d, Si 2p, Si 2s, S 2p were 368/374, 102, 153, and 162 eV, respectively, which confirms the existence of silver and 3‐MPTMS on cotton fabrics. The treated cotton fabrics showed prominent antimicrobial effectiveness against Staphylococcus aureus (ATCC 6538) and Klebsiella pneumonia (ATCC 4352). Furthermore, the laundry test showed that 66% of silver nanoparticles were retained after five washing cycles. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Several 2‐[1‐(1,2‐dihydroinden‐3‐ylidene) hydrazono]‐5‐aryldiazo‐4‐methyl‐1,3‐thiazoles were synthesized by reaction of 1‐(1,2‐Dihydroinden‐3‐ylidene) thiosemicarbazide with different hydrazonyl chlorides. The products are water insoluble and UV absorbers, expressed UPF‐rating values, and their H2O/DMF solutions were used in simultaneous dyeing and resin finishing of cotton fabrics. Results obtained show that finishing of cotton samples in presence of any of that dyes, irrespective of dye concentration, brings about an improvement in percent nitrogen, wrinkle recovery angle (WRA), dyeability, and UV protection rating values along with slight decrease of tensile strength (TS) compared with the untreated samples. Irrespective of dye structure, increasing the dye concentration from 0.5 and up to 1.7% results in an improvement in the percent nitrogen, TS and a remarkable improvement in both the dyeability, UPF‐rating values along with slight decrease in WRA and lower fastness properties of the treated fabrics. The treated fabrics was characterized using energy dispersive X‐ray analysis indicating the entrapped dye within the fabric structure. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
Poly(3‐methylthiophene) (P3MT)‐coated polyester fabric is a conductive textile with specific electrical and optical properties; for instance, color change under external stimulus (chromic behavior) was successfully prepared by chemical polymerization with continuous, speed stirring technique. To investigate the striking effect of some variable conditions of polymerization process, the effect of reaction time, temperature, and oxidant concentration on conductivity of the P3MT‐coated fabric was studied. Scanning electron microscopy confirmed that the surface of fabric has entirely been coated with P3MT particles. The further characterizations were investigated using Fourier transform infrared spectroscopy to provide evidence of forming particles onto the fabric, UV–vis absorption spectroscopy, electrical surface resistivity, and pressure dependence visible reflectance spectrophotometer measurements and X‐ray diffraction analysis. The blue shift in wavelength of maximum absorption of about 95 nm to a longer wavelength from that observed in the reflectance spectra of coated polyester fabric; under high‐pressure P3MT‐coated polyester fabric demonstrated piezochromism. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
In this work, cationized cotton/nylon fabric was treated with reduced graphene oxide (rGO) to produce highly conductive fabric. The fabric was cationized with 3‐chloro‐2‐hydroxy propyl trimethyl ammonium chloride to attract more anionic GO. The fabric was then treated with GO followed by reduction with sodium dithionite. The results of energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, and X‐ray photoelectron spectroscopy indicated entire coverage of the fabric surface with rGO. The color of fabrics changed to gray‐black and the electrical resistance decreased to 0.6 × 103 Ω sq?1. The washing fastness was measured according to ISO 105‐CO5 for color change and also electrical resistance of the samples demonstrated well stability of rGO on the fabric surface. The antibacterial activities of the treated fabrics improved against Gram‐negative bacteria including Escherichia coli (84.8%) and Pseudomonas aeruginosa (96.4%) and also Gram‐positive bacteria consisting Staphylococcus aureus (100%) and Enterococcus faecalis (98.4%). Further, the treated fabrics indicated an excellent UV reflectance of 100%. Finally heating of the cationized rGO fabric at 220 °C displayed a lower electrical resistance of 0.5 × 103 Ω sq?1. The thermogravimetric analysis showed that heating has a slight effect on the dimensional thermal stability of the treated fabric as shrunk 2.43%. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45493.  相似文献   

9.
Vinyltriethoxysilane was used to modify the surface of cotton to provide polymerizable vinyl groups on the fiber surface. An ultraviolet‐absorbing monomer, 2‐[3‐(2H‐benzotriazol‐2‐yl)‐4‐hydroxyphenyl]ethyl methacrylate, was polymerized on the vinyltriethoxysilane‐treated fabric to prepare ultraviolet‐protective cotton. The effects of the amounts of the solvent, silane coupling agent, and 2‐[3‐(2H‐benzotriazol‐2‐yl)‐4‐hydroxyphenyl]ethyl methacrylate on the surface morphology and ultraviolet‐protection factor of the treated cotton fabric were investigated. With a suitable process, poly{2‐[3‐(2H‐benzotriazol‐2‐yl)‐4‐hydroxyphenyl]ethyl methacrylate} was successfully coated onto the fabric, and it significantly reduced ultraviolet transmission through the fabric, resulting in a cotton fabric with excellent ultraviolet‐protection properties. The use of a silane coupling agent helped to ensure a polymer coating with good uniformity and good resistance to washing. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
The sulfated β‐cyclodextrin (sb‐cd) was prepared from β‐cyclodextrin and the sb‐cd was crosslinked with cotton fabric using ethylenediaminetetraacetic acid (EDTA) as crosslinker. After crosslinking, the synthesized ZnO nanoparticles were padded on this fabric surface. Then, the treated fabrics were dyed with neem extract. The synthesized polymer, crosslinked and nanoparticle‐treated cotton fabrics were characterized using fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), particle sized analyzer, and transmission electron microscopy (TEM) studies. The antibacterial test was done against Staphylococcus aureus and Escherichia coli bacterium. The composite coated with neem dyed cotton fabric has exhibited 71% of dye uptake with 2–3 fastness grade and it has 99% of antibacterial efficiency for S. aureus and 97% for E. coli bacterium. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
In this article, the superhydrophobic and antibacterial surface on the cotton fabric were fabricated with the UV curable waterborne coatings, the silver nanoparticles, and the stearic acid. The cotton fabric coated with silver stearate was obtained by immersing in a mixture of sodium hydroxide and then modified by stearic acid. Results showed that the water contact angle on the surface of the fabric was 157.6°. The micromorphology and chemical ingredients of the surface of the coating were studied by scanning electron microscope, Fourier transforms infrared spectroscopy, and X photoelectric spectrometer. Results showed that the immersion resulted in a double decomposition reaction and with the modification of the stearic acid, the silver stearate was formed on the surface, which provided a rough surface required for super-hydrophobicity. And the acid and alkali resistance test, water-resistance test, and antibacterial activity test indicated that the coating had good acid and alkaline resistance, water-resistance, and antibacterial properties.  相似文献   

12.
Nanofibers of natural cotton cellulose with a degree of polymerization above 10,000 were prepared by electrospinning; they were then functionalized with a rare‐earth nano‐oxide material of cerium dioxide (CeO2) by means of the hydrothermal method to obtain the designated properties. The morphology, structure, and properties of the as‐obtained nanocomposite fibers were characterized by scanning electron microscopy, transmission electron microscopy, energy‐dispersive spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, and ultraviolet (UV)–visible spectrophotometry. The results show that hydrothermally grown CeO2 nanoparticles exhibited a polycrystalline cubic fluorite structure and could be dispersed uniformly on the surface of the cellulose nanofiber. The strong interface and electrostatic interactions between the nanoparticles and nanofibers effectively prevented nanoparticle fall‐off. The modified natural cotton cellulose nanofibers showed excellent protection against UV radiation because of the function of the CeO2 particles. Such cellulose nanocomposite materials could have potential applications in UV protection for data‐storage or memory devices. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1524–1529, 2013  相似文献   

13.
In this study, flame retardancy properties of fabrics treated with phosphorous (P) doped and undoped SiO2 thin films were developed by sol–gel technique. As to this aim, P‐doped and undoped SiO2 film were coated on cotton fabric from the solutions prepared from P, Si‐based precursors, solvent, and chelating agent at low temperature in air using sol–gel technique. To determine solution characteristics, which affect thin film structure, turbidity, pH values, and rheological properties of the prepared solutions were measured using a turbidimeter, a pH meter, and a rheometer machines before coating process. The thermal, structural, and microstructural characterization of the coating were done using differential thermal analysis/thermograviometry, fourier transform infrared spectroscopy, X‐ray diffractometry, and scanning electron microscopy. In addition, tensile strength, wash fastness, flame retandancy, and lightness properties of the coated fabrics were determined. To compensate the slight loss of tensile strength of samples, which occurred at the treated fabrics with P‐doped Si‐based solutions, the cotton fabrics were coated with polyurethane films during second step. In conclusion, the flame retardant cotton fabric with durability of washing as halogen‐free without requiring after treatment with formaldehyde was fabricated using sol–gel processing for the first time. Moreover the cotton fabrics, which were treated with P‐doped Si‐based solutions and then coated with polyurethane at second step, still has got nonflammable property. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

14.
Superhydrophobic coating was developed on cotton fabric in this article using a dodecafluoroheptyl‐containing polyacrylate (DFPA) and nanosilica. Film morphology of DFPA on cotton fibers/fabrics and chemical compositions of the treated cotton fabric were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X‐ray photoelectron spectroscopy (XPS), respectively. DFPA could form a relatively even film on the cotton fabric/fiber under SEM observation; however, it presented a rough and microphase‐separated pattern under AFM observation. There were many mountain‐like protuberances. The height of the protuberances and the root mean square roughness (Rms) of the film reached about 20–50 nm and 12.511 nm in 2 × 2‐μm2 scanning field (as the scale data was 100 nm). XPS analysis indicated that the perfluoroalkyl groups had the tendency to enrich at the film–air interface. DFPA could make the treated cotton fabric with a water contact angle (WCA) at about 138.5°. Cotton fabric was previously roughened using a 1 wt % silica sol with an average particle size of 20–30 nm and then finished by DFPA; hydrophobicity of the resultant cotton fabric was strongly improved, and WCA could reach 153.6°. The color of this superhydrophobic fabric would not be influenced, but its softness decreased compared to untreated fabric. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
A facile method for strongly anchoring silver nanoparticles (AgNPs) onto cotton fabrics was reported. It consists in loading AgNPs onto the cotton fiber preliminary coated with maleic anhydride plasma polymer layer. This results in hydrolyzis and ring opening of anhydride groups followed by electrovalent bonding of silver ions and reduction in NaBH4. X‐ray photoelectron spectroscopy (XPS), infrared spectroscopy, and scanning electron microscope (SEM) were used to analyze changes in the surface chemical composition and morphology of the plasma modified fibers. The presence of AgNPs was confirmed by UV–Visible spectroscopy and atomic force microscopy (AFM) images. Remarkably, varying plasma duty cycle for plasma polymer deposition allowed tailoring the amount of loaded AgNPs. The highest amount of AgNPs was obtained with the lowest duty cycle values. Qualitative tests showed that silver containing plasma modified cotton displays significant antibacterial activity. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41279.  相似文献   

16.
To examine the feasibility of developing flame‐retardant‐textile coated fabric systems with electrospun polyamide/boric acid nanocomposites, fiber webs coated on cotton substrates were developed to impart‐fire retardant properties. The morphology of the polyamide/boric acid nanocomposite fibers was examined with scanning electron microscopy. The flame‐retardant properties of coated fabric systems with different nanoparticle contents were assessed. The flame retardancy of the boric acid coated fabric systems was evaluated quantitatively with a flammability test apparatus fabricated on the basis of Consumer Product Safety Commission 16 Code of Federal Regulations part 1610 standard and also by thermogravimetric analysis. The 0.05 wt % boric acid nanocomposite fiber web coated on pure cotton fabric exhibited an increment in flame‐spreading time of greater than 80%, and this indicated excellent fire protection. Also, the coated fabric systems with 0.05% boric acid nanocomposite fiber webs exhibited a distinct shift in the peak value in the thermal degradation profile and a 75% increase in char formation in the thermooxidative degradation profile, as indicated by the results of thermogravimetric analysis. The results show the feasibility of successfully imparting flame‐retardant properties to cotton fabrics through the electrospinning of the polymer material with boric acid nanoparticles. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
Cotton fabric has been made electro‐conductive by electroless deposition of silver from its salt solution. Preparation process involved radical graft polymerization of glycidyl methacrylate monomer on plain woven cotton fabric using 10 kGy dose of electron beam irradiation, and then hydrazination of the epoxy ring of the monomer to introduce reducing agents into the fibre chemical structure. These reducing agents are sites for metal particle deposition. The chemical modifications were characterized by infrared spectroscopic studies. From X‐ray diffraction pattern analysis, the average size of these deposited silver metallic particles is 41 nm. These are observed as heterogeneous deposition on the fibre surface in scanning electron images. From thermogravimetric analysis, around 7.5% of the metal plated fabric weight is silver. The deposited silver nanoparticles make a conductive pathway through contact network, and this network brings a drop in average value of surface resistivity of the cotton fabric from 109 Ω/sq to 3.63 Ω/sq for the metallised fabric. Such prepared electro‐conductive fabric showed very good wash durability of electrical conductivity up to 15 washing cycles when carried out as per ISO‐105‐C10:2006 (E) test no. A (1) standard, indicating firm adherence of silver nanoparticles to the fabric surface. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44576.  相似文献   

18.
Cotton fabric was chemically modified with a 1,3,5‐triazine derivative containing multireactive and multicationic groups, 2,4,6‐tri[(2‐hydroxy‐3‐trimethyl‐ammonium)propyl]‐1,3,5‐triazine chloride (Tri‐HTAC). The morphological structures of net‐modified cotton cellulose were investigated with differential scanning calorimetry, X‐ray diffraction, and scanning electron microscopy. The results showed that crystallinity and preferred orientation of net‐modified cellulose decreased. The tensile strength of net‐modified cotton decreased and crease recovery angle increased. The thermal stability of the net‐modified cotton was slightly improved. Representative scanning electron micrographs indicated that there appears to be appreciable difference in the appearance of the surfaces of the unmodified and the net‐modified cotton fibers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2700–2707, 2006  相似文献   

19.
The feasibility of adherent silver layers onto PET fabrics by electroless plating was explored and its optimal technology for modification and electroless plating was investigated. Morphology, structure, and thermal stability of silver plating PET fabrics were characterized by scanning electric microscope (SEM), X‐ray diffraction (XRD) and thermogravitric (TG) analysis. As the silver weight on the modified fabric is 25 g/m2, the electromagnetic shielding effectiveness (SE) of silver plating PET fabric is more than 30dB at the frequency ranging from 1MHz to 5000 MHz. The results show that the silver plating PET fabric has good electrical conductivity and electromagnetic shielding property. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
Mixtures of an epoxy resin and organophilic montmorillonites were subjected to ultraviolet (UV)‐induced photopolymerization. Two types of commercially available nanoclays, namely Cloisite 30B and Cloisite Na+, were modified through interaction with organic compatibilizers (dodecylsuccinic anhydride, octadecylamine, octadecyl alcohol, and octadecanoic acid). The modified nanoclays, dispersed in the liquid epoxy resin at 5 wt%, were photopolymerized to get nanocomposite films. The kinetics of the photopolymerization was evaluated by means of real‐time Fourier transform infrared spectroscopy. The modified nanoclays and their nanocomposites were characterized through X‐ray diffractometry; transmission electron microscopy showed the presence of intercalated and partially exfoliated morphologies in the nanocomposites. Thermogravimetric and dynamic‐mechanical analyses showed an increase of the thermal properties and an increase of the glass transition temperatures of the nanocomposites compared with that of the neat UV‐cured resin. Finally, the oxygen barrier properties of nanocomposite films, coated on a polyethyleneterephtalate substrate, were evaluated; the decrease of permeability was correlated with the degree of exfoliation of the nanocomposites. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号