首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel nanocomposites of barium hexaferrite‐ and fullerene‐containing polyurethane were synthesized and characterized by scanning electron microscopy, transmission electron microscopy, X‐ray diffractometry, and energy‐dispersive X‐ray diffraction. The nanoparticles showed good dispersion in the polyurethane matrix. Their thermal, mechanical, and electromagnetic absorbance properties were studied. The complex permeability and permittivity were measured in the frequency range of 8.2–12.4 GHz. The maximum reflection loss of the nanocomposites was found to increase with increasing the ferrite content from 1% to 5%, with maximum value of −7.5 dB at only 5% composition. The incorporation of nanofiller not only imparts mechanical strength to the nanocomposite but also shows good radar‐absorbing properties at only 5% filler concentration. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Polyurethane (PU) nanocomposites were prepared from hectorite (HEC) and laponite without adding any organic modifier. PU‐montmorillonite nanocomposites were prepared for comparison. The structure of the composites were investigated by transmission electron microscopy, X‐ray diffraction spectroscopy, and Fourier transform infrared spectroscopy. Thermal gravimetric analysis and dynamic mechanic analysis were used for determination of the thermal and viscoelastic behaviors, respectively. Tensile tests were conducted for characterization of the mechanical properties. The results showed a 113.5% increase in the tensile strength of PU containing 7 wt % HEC compared to that of neat PU. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
Two different commercial refractory castables based on mullite or magnesia aggregates have been improved through addition of 0–25 wt.% nano‐magnesium aluminate spinel (MA) powder. Physico‐mechanical and refractory properties were tested at different firing temperatures. The phase composition, thermal analysis, and microstructure of these refractory castables were detected using X‐ray diffraction (XRD), differential thermal analysis (DTA), as well as scanning electron microscope (SEM) attached with energy dispersive X‐ray unit, respectively. The castable sample mix containing 10 wt.% nano‐MA spinel powder was chosen as an optimum composition according to its good sintering, mechanical as well as refractory properties.  相似文献   

4.
We have developed flame‐retardant polyurethanes (FRPUs) and polyurethane (PU) nanocomposites via in situ polymerization. Three series of thermoplastic elastomeric PUs were synthesized to investigate the effect of incorporating 3‐chloro‐1,2‐propanediol (CPD) and nanoclay on mechanical, thermal properties, and also resistance to burning. PU soft segments were based on poly(propylene glycol). Hard segments were based on either CPD or 1,4‐buthane diol (BDO) in combination with methyl phenyl di‐isocyanate named PU or FRPU, respectively. In the third series, CPD was used as chain extender also nanoclay (1% wt) and incorporated and named as flame‐retardant polyurethane nanocomposites (FRPUN). Mechanical properties and LOI of PUs and nanocomposites have been evaluated. Results showed that increasing the hard segment (chlorine content) leads to the increase in flame retardancy and burning time. Addition of nanoclay to CPD‐containing PUs leads to obtain self‐extinguish PUs using lower CPD contents, higher Young's modulus, and strength without any noticeable decrease in elongation at break. Investigation of the TGA results showed that copresence of nanoclay and chlorine structure in the PU backbone can change thermal degradation pattern and improve nanocomposite thermal stability. X‐ray diffraction and transmission electron microscopy studies confirmed that exfoliation and intercalation have been well done. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Nanocomposites with varying concentrations of nanosized silicon dioxide particles were prepared by adding nanosilica to interpenetrating polymer networks (IPN)s of polyurethane and epoxy resin (PU/EP). The PU/EP IPNs and nanocomposites were studied by dynamic mechanical analysis, scanning electronic microscopy, wide‐angle X‐ray diffraction and small‐angle X‐ray scattering. The result showed that adding nanosize silicon dioxide can improve the properties of compatibility, damping and phase structure of IPN matrices. Copyright © 2003 Society of Chemical Industry  相似文献   

6.
organoclay‐modified polyurethane/epoxy interpenetrating network nanocomposites (oM‐PU/EP nanocomposites) were prepared by adding organophilic montmorillonite (oMMT) to interpenetrating polymer networks (IPNs) of polyurethane and epoxy resin (PU/EP) which had been prepared by a sequential polymerization technique. Wide‐angle X‐ray diffraction (WAXD) and transmission electronic microscopy (TEM) analysis showed that the interpenetrating process of PU and EP improved the exfoliation and dispersion degree of oMMT. The effects of the NCO/OH ratio (isocyanate index), the weight ratio of PU/EP and oMMT content on the phase structure and the mechanical properties of the oM‐PU/EP nanocomposites were studied by tensile testing and scanning electronic microscopy (SEM). Water absorption tests showed that the PU/EP interpenetrating networks and oMMT had synergistic effects on improvement in the water resistance of the oM‐PU/EP nanocomposites. Differential scanning calorimetry (DSC) analysis showed that PU was compatible with EP and that the glass transition temperature (Tg) of the oM‐PU/EP nanocomposites increased with the oMMT content up to 3 wt%, and then decreased with further increasing oMMT content. The thermal stability of these nanocomposites with various oMMT contents was studied by thermogravimetric analysis (TGA), and the mechanism of thermal stability improvement was discussed according to the experimental results. Copyright © 2005 Society of Chemical Industry  相似文献   

7.
An organophilic palygorskite (o‐PGS) prepared by the treatment of natural palygorskite with hexadecyl trimethyl ammonium bromide was incorporated into interpenetrating polymer networks (IPNs) of polyurethane (PU) and epoxy resin (EP), and a series of PU/EP/clay nanocomposites were obtained by a sequential polymeric technique and compression‐molding method. X‐ray diffraction and scanning electron microscopy analysis showed that adding nanosize o‐PGS could promote the compatibility and phase structure of PU/EP IPN matrices. Tensile testing and thermal analysis proved that the mechanical and thermal properties of the PU/EP IPN nanocomposites were superior to those of the pure PU/EP IPN. This was attributed to the special fibrillar structure of palygorskite and the synergistic effect between o‐PGS and the IPN matrices. In addition, the swelling behavior studies indicated that the crosslink density of PU/EP IPN gradually increased with increasing o‐PGS content. The reason may be that o‐PGS made the chains more rigid and dense. As for the flame retardancy, the PU/EP nanocomposites had a higher limiting oxygen index than the pure PU. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Nanocomposites of an ethylene vinyl acetate copolymer and clay were prepared by melt blending and extrusion. Two different compatibilizers, ethylene glycidyl methacrylate (EGMA) and maleic anhydride grafted polypropylene (MAPP), were used in these nanocomposites. The structural properties of the composites were characterized with X‐ray diffraction and transmission electron microscopy. The surface morphology was characterized with polarized optical microscopy. The tensile and permeability properties were studied. The thermal stability of the nanocomposites was characterized through thermogravimetric analysis. MAPP‐compatibilized nanocomposites had intercalated and partially exfoliated structures, whereas EGMA‐compatibilized nanocomposites had completely exfoliated structures. The EGMA‐compatibilized nanocomposites were thermally more stable than the MAPP‐compatibilized nanocomposites. The mechanical and permeability properties of the EGMA‐compatibilized nanocomposites were better than those of the MAPP‐compatibilized nanocomposites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

9.
A spray drying approach has been used to prepare polyurethane/multiwalled carbon nanotube (PU/MWCNT) composites. By using this method, the MWCNTs can be dispersed homogeneously in the PU matrix in an attempt to improve the mechanical properties of the nanocomposites. The morphology of the resulting PU/MWCNT composites was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM and TEM observations illustrate that the MWCNTs are dispersed finely and uniformly in the PU matrix. X‐ray diffraction results indicate that the microphase separation structure of the PU is slightly affected by the presence of the MWCNTs. The mechanical properties such as tensile strength, tensile modulus, elongation at break, and hardness of the nanocomposites were studied. The electrical and the thermal conductivity of the nanocomposites were also evaluated. The results show that both the electrical and the thermal conductivity increase with the increase of MWCNT loading. In addition, the percolation threshold value of the PU composites is significantly reduced to about 5 wt % because of the high aspect ratio of carbon nanotubes and exclusive effect of latex particles of PU emulsion in dispersion. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
A bifunctional reactive surfactant containing a polymerizable methacrylate group and a benzophenone group, [2‐(methacryloyloxy)ethyl](4‐benzoylbenzyl)dimethylammonium bromide (MDAB), was synthesized to modify montmorillonite (MMT) for the preparation of nanocomposites via photoinduced polymerization. Fourier transform infrared, thermogravimetric analysis, and X‐ray diffraction results indicated that MDAB‐modified MMT was obtained and had intercalated structures. The morphology of the ultraviolet‐cured bisphenol A epoxy diacrylate/MMT nanocomposites prepared from the organically modified MMTs was studied with X‐ray diffraction and transmission electron microscopy, and the results showed an intercalated structure with partial exfoliation for all the samples. Experimental results from thermogravimetric analysis, differential scanning calorimetry, and mechanical property testing also indicated that the thermal and mechanical properties of the ultraviolet‐cured nanocomposites were significantly enhanced by the presence of this bifunctional, reactive, organically modified MMT. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
The effects of soft‐segment molecular weight and organic modification of montmorillonite (MMT) on thermal and mechanical properties of segmented polyurethane (PU) elastomers were investigated. The PU/MMT nanocomposites were prepared by in situ polymerization, and the compositions included soft segments with number average molecular weights of 1000, 2000, and 2900, and organic‐modified MMT (including MMT‐30B and MMT‐I30E). The nanocomposites produced were characterized using wide‐angle X‐ray diffraction (WAXD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and mechanical testing. The TEM and XRD results revealed that both MMT‐30B and MMT‐I30E were intercalated, and partially exfoliated by the PU. Mechanical tests showed that the PU1000 series in soft‐segment molecular weight yielded superior tensile properties compared with the PU2000 and PU2900 series. Also, for a given molecular weight of soft segment in PU, the MMT‐30B nanocomposites exhibited greater increases in Young's modulus, tensile strength, and elongation at break than the MMT‐I30E counterpart, and the crystallinity of PU was enhanced by the clays. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Polystyrene‐Organo Montmorillonite (PS‐MMT) nanocomposites were prepared by suspension free radical polymerization of styrene in the dispersed organophilic montmorillonite. The results of X‐ray diffraction (XRD) and Transmission Electron Microscopy (TEM) indicated that exfoliated nanocomposites were achieved. The effect of organic modifiers (surfactants) on the properties of the synthesized nanocomposites was studied. It is found that polystyrene‐MMT nanocomposite with 5.0 wt% of organo‐MMT gave the greatest improvement in thermal stability, and polystyrene‐MMT nanocomposites with 7.5 wt% of organo‐MMT showed the greatest improvement in mechanical properties, compared with that of pure polystyrene (PS) in our experimental conditions. The alkyl chain length of surfactant used in fabricating organo‐MMT affects the synthesized PS nanocomposites: the longer the alkyl chain length that the surfactant possesses, the higher the glass transition temperature of the PS nanocomposite, However, the organoclay in the nanocomposites seems to play a dual role: (a) as nanofiller leading to the increase of storage modulus and (b) as plasticizer leading to the decrease of storage modulus. This results in a lower storage modulus of PS‐TMOMMT and PS‐TMTMMT nanocomposites than that of PS‐TMDMMT and PS‐TMCMMT nanocomposites. Further study is needed to confirm the above hypothesis.  相似文献   

13.
Polymer blending coupled with nanofillers has been widely accepted as one of the cheaper methods to develop high‐performance polymeric materials for various applications. In the present work, dodecyl sulfate intercalated Mg? Al‐based layered double hydroxide (DS‐LDH) was used as nanofiller in the synthesis of polyurethane blended with nitrile butadiene rubber (PU/NBR; 1:1 w/w) nanocomposites, which were subsequently characterized. X‐ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the partial dispersion of Mg? Al layers in PU/NBR blends at lower filler content followed by aggregation at higher filler loading. In comparison to the neat PU/NBR blend, the tensile strength (156%) and elongation at break (21%) show maximum improvement for 1 wt% filler loading. The storage and loss moduli, thermal stability and limiting oxygen index of the nanocomposites are higher compared to the neat PU/NBR blend. Glass transition temperature and swelling measurements increase up to 3 wt% DS‐LDH loading in PU/NBR compared to either neat PU/NBR or its other corresponding nanocomposites. XRD and TEM analyses indicate the partial distribution of DS‐LDH in PU/NBR blends suggesting the formation of partially exfoliated nanocomposites. The improvements in mechanical, thermal and flame retardancy properties are much greater compared to the neat blend confirming the formation of high‐performance polymer nanocomposites. Copyright © 2009 Society of Chemical Industry  相似文献   

14.
The polyurethane/C16C18‐MMT (the montmorillonite modified with cetyloctadecyldimethyl ammonium bromide) nanocomposites were synthesized by intercalative polymerization and cured under room temperature. The d‐spacing and the dispersion of the C16C18‐MMT in the nanocomposites were measured by X‐ray Diffraction (XRD) and Transmission Electron Microscope (TEM). The mechanical and thermal properties of the nanocomposites were measured by Universal Testing System, Electric Anti‐fold Instrument, Thermogravimetric Analysis (TGA), and Differential Scanning Calorimetry (DSC). It was found out that introducing C16C18‐montmorillonite (MMT) in the polyurethane (PU) displayed good mechanical properties and thermal stability. Rheology behavior in liquid state showed that the addition of the C16C18‐MMT to PU resulted in low gel time and high viscosity. POLYM. COMPOS. 27:470–474, 2006. © 2006 Society of Plastics Engineers.  相似文献   

15.
Biodegradable poly(ester)urethane (PU) elastomer‐based nanocomposite films incorporated with organically modified nanoclay were prepared with melt‐extrusion compounding followed by a casting film process. These films were intended for application as biodegradable food packaging films, with their enhanced gas barrier, mechanical, and thermal properties and good flexibility. From both X‐ray diffraction measurements and transmission electron microscopy observations, the coexistence of intercalated tactoids and exfoliated silicate layers in the compounded PU/clay nanocomposite films was confirmed. In addition, the morphology exhibited a clay dispersion state in the matrix and was influenced by the incorporated nanoclay content. The effects of the nanoclay loading level on the thermal, mechanical, and barrier properties of the compounded nanocomposites were also investigated. As a result, it was revealed that the addition of nanoclay up to a certain level resulted in a remarkable improvement in the thermal properties in terms of thermal stability and the degree of thermal shrinkage; mechanical properties, including dynamic storage modulus and tensile modulus; and oxygen/water‐vapor barrier properties of the nanocomposite films. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
Polymeric nanocomposites were synthesized from functionalized soybean‐oil‐based polymer matrix and montmorillonite (MMT) clay using an in situ free radical polymerization reaction. Acrylated epoxidized soybean oil combined with styrene was used as the monomer. Organophilic MMT (OrgMMT) was obtained using a quaternized derivative of methyl oleate, which was synthesized from olive oil triglyceride, as a renewable intercalant. The resultant nanocomposites were characterized using X‐ray diffraction and atomic force microscopy. The effect of increased nanofiller loading on the thermal and mechanical properties of the nanocomposites was investigated using thermogravimetric analysis and dynamic mechanical analysis. It was found that the desired exfoliated nanocomposite structure was achieved when the OrgMMT loading was 1 and 2 wt%, whereas a partially exfoliated or intercalated nanocomposite was obtained for 3 wt% loading. All the nanocomposites were found to have improved thermal and mechanical properties as compared with virgin acrylated epoxidized soybean‐oil‐based polymer matrix. The nanocomposite containing 2 wt% OrgMMT clay was found to have the highest thermal stability and best dynamic mechanical performance. Copyright © 2010 Society of Chemical Industry  相似文献   

17.
Nanocomposite polyurethane (PU)–organoclay materials have been synthesized via in‐situ polymerization. The organoclay is first prepared by intercalation of tyramine into montmorillonite (MMT)‐clay through ion exchange process. The syntheses of polyurethane–organoclay hybrid films containing different ratios of clay were carried out by swelling the organoclay into diol and diamine followed by addition of diisocyanate and then cured. The nanocomposites with dispersed and exfoliated structure of MMT were obtained as evidenced by X‐ray diffraction and scanning electron microscope. X‐ray diffraction showed that there is no peak corresponding to d001 spacing in organoclay with the ratios up to 20 wt%. SEM images confirmed the dispersion of nanometer silicate layers in the polyurethane matrix. Also, it was found that the presence of organoclay leads to improvement in the mechanical properties. The tensile strength was increased with increasing the organoclay contents to 20 wt% by 221% in comparision to the PU with 0% organoclay. POLYM. COMPOS. 28:108–115, 2007. © 2007 Society of Plastics Engineers  相似文献   

18.
Titanium dioxide nanofiber (TNF) was synthesized from the anatase phase of titanium dioxide by the hydrothermal process. The synthesized TNF was reinforced with poly(trimethylene terephthalate)/poly(butylene adipate‐co‐terephthalate) blend to enhance the compatibility and improve the mechanical properties of the blend. The nanocomposite blends were prepared by using a twin‐screw extrusion process with different percentages (2.5%, 5.0%, 7.5%, and 10%) of TNF. The synthesized TNF phase structure was investigated by X‐ray diffraction, scanning electron microscopy, and Fourier‐transform infrared characterization. Enhanced compatibility was observed between the nanofiber and the polymer matrix, which was further confirmed by X‐ray diffraction and scanning electron microscopy analysis. The synthesized nanocomposites exhibited higher thermal stability and enhanced mechanical properties compared with the neat poly(trimethylene terephthalate)/poly(butylene adipate‐co‐terephthalate) matrix. J. VINYL ADDIT. TECHNOL., 22:529–538, 2016. © 2015 Society of Plastics Engineers  相似文献   

19.
Flexible epoxy/ZnO nanocomposites were prepared using different loadings of ZnO nanoparticles (NPs) and nanotubes (NTs) via in situ curing of epoxy with polyoxyethylene diamines (ED600). ZnO precursor was synthesized via precipitation method and ZnO NPs with an average size of 25 nm were used in the preparation of the nanocomposites. ZnO NTs with an average outer diameter, length of 200 nm and 2.4 µm respectively, were prepared by the wet method (hydrothermal method). The morphology, structure, and composition of the nanocomposites were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FT‐IR), and thermo‐gravimetric analysis (TGA). The effect of morphology and content of nano‐ZnO materials on the thermal and mechanical properties of flexible epoxy was studied. In addition, the hardness and indentation depth were calculated by means of nanoindentation. Results showed that the mechanical and thermal properties of flexible epoxy were enhanced by incorporation of ZnO nanostructure into the polymer matrix. POLYM. ENG. SCI., 57:932–946, 2017. © 2016 Society of Plastics Engineers  相似文献   

20.
In the past few years, layered double hydroxides (LDHs) with monolayer structure have been much studied for the development of polymer nanocomposites. LDHs with intercalated stearate anions form a bilayer structure with increased interlayer spacing and are expected to be better nanofillers in polymers. In the work reported, thermoplastic polyurethane (PU)/stearate‐intercalated LDH nanocomposites were prepared by solution intercalation and characterized. X‐ray diffraction and transmission electron microscopy confirmed the exfoliation at lower filler loading followed by intercalation at higher filler loading in PU matrix. As regards mechanical properties, these nanocomposites showed maximum improvements in tensile strength (45%) and elongation at break (53%) at 1 and 3 wt% loadings. Maximum improvements in storage and loss moduli (20%) with a shift of glass transition temperature (15 °C) and an increase in thermal stability (32 °C) at 50% weight loss were observed at 8 wt% loading in PU. Differential scanning calorimetry showed a shift of melting temperature of the soft segment in the nanocomposites compared to neat PU, possibly due to the nucleating effect of stearate‐intercalated LDH on the crystal structure of PU. All these findings are promising for the development of mechanically improved, thermally stable novel PU nanocomposites. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号