首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel flame retardant containing phosphorus and sulfur, bis(2‐tienyl)phenylphosphine (BTPP) was synthesized and characterized with Fourier transform infrared spectroscopy, 1H, 13C, and 31P nuclear magnetic resonance. BTPP was used to impart flame retardancy to polycarbonate (PC). Combustion behaviors and thermal degradation properties of PC/BTPP system were assayed by limiting oxygen index (LOI), vertical burning test (UL‐94), cone calorimeter test, and thermogravimetric analysis. PC/3 wt% BTPP passed UL‐94 V‐0 rating with 3.0 mm samples and the LOI value was 36.5%. PC/6 wt% BTPP passed UL‐94 V‐0 rating with 1.6 mm samples and the LOI value was 38.5%. Scanning electron microscopy revealed that char properties had direct effects on the flame retardancy. Mechanical properties and water resistance of PC/BTPP system were also examined. After water resistance test, PC/3 wt% BTPP with 3.0 mm samples and PC/6 wt% BTPP with 1.6 mm samples kept V‐0 rating and mass loss were only 0.2%. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

2.
Novel phosphorus‐containing and nitrogen‐containing intumescent flame retardants, bis‐aminobenzyl spirocylic pentaerythritol bisphosphonate (BASPB) and arylene‐N,N′‐bis(2,2‐dimethyl‐1,3‐propanediol phosphoramidate) (ABDPP), were synthesized, and their structures were characterized with Fourier transform infrared spectroscopy and 1H and 31P nuclear magnetic resonance. The phosphorus compounds were used to impart flame retardancy to polycarbonate (PC). Combustion behaviors and thermal degradation properties of the flame‐retarded‐PC composites were assayed by limiting oxygen index (LOI), vertical burning test (UL‐94), cone calorimeter test, and thermogravimetric analysis. PC/5 wt.% BASPB and PC/5 wt.% ABDPP composites passed UL‐94 V‐0 rating; their LOI values were 35.5% and 34.7%, respectively. Scanning electron microscopy revealed that the char properties had crucial effects on the flame retardancy. The mechanical properties and water resistance of the PC/BASPB and PC/ABDPP composites were also measured. After water resistance test, PC/5 wt.% BASPB and PC/5 wt.% ABDPP composites kept V‐0 rating, and the mass loss was only 1.0%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
A novel silicone‐containing flame retardant (HSOBA) synthesized from hydrogen‐containing silicone oil and Bisphenol A via a simple approach has been incorporated into polycarbonate (PC) matrix to study its effects on the flame retardancy. The flame retardancy of PC/HSOBA composites is investigated by limiting oxygen index (LOI), vertical burning tests (UL‐94), and cone calorimeter measurement. The LOI value of the composites is 31.7 and the UL‐94 rating reaches V‐0, when the content of HSOBA is 3 wt %. Cone calorimeter data confirm that the HSOBA acts as an effective additive functioning both as flame retardants and as smoke suppressant. Evolution of the thermal behaviors of the composites tested by TGA, the morphological structures, and the constituent of char residue after LOI tests characterized by scanning electronic microscopy‐energy‐dispersive X‐ray analysis were used to explain the possible flame‐retardant mode. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
Composites of ultrafine polyhedral oligomeric octaphenyl silsesquioxane (OPS) and polycarbonate (PC) were prepared by melt blending. The mechanical and thermal properties of the composites were characterized by tensile and flexural tests, impact test, differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA), and thermal gravimetric analysis (TGA). Rheological properties of these melts were tested by torque rheometer. The flame retardancy of the composites was tested by limiting oxygen index (LOI), the vertical burning (UL‐94), and cone calorimeter test. The char residue was characterized by scanning electron microscope (SEM) and ATR‐FTIR spectrum. Furthermore, the dispersion of OPS particles in the PC matrix was evidenced by SEM. The results indicate that the glass transition temperatures (Tg) and torque of the composites decrease with increasing OPS loading. The onset decomposition temperatures of composites are lower than that of PC. The LOI value and UL‐94 rating of the PC/OPS composites increase with increasing loading of OPS. When OPS loading reaches 6 wt %, the LOI value is 33.8%, UL‐94 (1.6 mm) V‐0 rating is obtained, and peak heat release rate (PHRR) decreases from 570 to 292 kJ m?2. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
A novel amine‐terminated and organophosphorus‐containing compound m‐aminophenylene phenyl phosphine oxide oligomer (APPPOO) was synthesized and used as curing and flame‐retarding agent for epoxy resins. Its chemical structure was characterized by Fourier transform infrared (FTIR) spectroscopy, 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance, and 31P nuclear magnetic resonance. The flame‐retardant properties, combusting performances, and thermal degradation behaviors of the cured epoxy resins were investigated by limiting oxygen index (LOI), vertical burning test (UL‐94), cone calorimeter test, and thermogravimetric analysis. The EPO/APPPOO thermosets passed V‐1 rating with the thickness of 3.0 mm and the LOI value reached 34.8%. The thermosets could pass V‐2 rating when the thickness of the samples was 1.6 mm. The cone calorimeter test demonstrated that the parameters of EPO/APPPOO thermosets including heat release rate and total heat release significantly decreased compared with EPO/PDA thermosets. Scanning electron microscopy revealed that the incorporation of APPPOO into epoxy resins obviously accelerated the formation of the compact and stronger char layer to improve flame‐retardant properties of the cured epoxy resins during combustion. The mechanical properties and water resistance of the cured epoxy resins were also measured. After the water‐resistance test, EPO/APPPOO thermosets still remained excellent flame retardant and the water uptake was only 0.4%. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41159.  相似文献   

6.
Melt blending was used to prepare a series of flame‐retardant hybrids based on bisphenol A, polycarbonate (PC), potassium‐4‐(phenylsulfonyl)benzenesulfonate (KSS), and the organic silicon compounds N‐(β‐aminoethyl)‐γ‐aminopropylmethyldimethoxysilane (KH‐602) and diphenylsilanediol. The flame retardancy and thermal stability of the hybrids were investigated by the limiting oxygen index (LOI) test, the UL‐94 vertical burning test, and thermogravimetric analysis. The results show that the flame retardancy of the PC/KSS system and the weight of the residues improved with the addition of the organic silicon. When the content of diphenylsilanediol was 4 wt % and KH‐602 was 1 wt %, the LOI value of the PC/KSS system was found to be 47, and Class V‐0 of the UL‐94 test was achieved. The microstructures observed by scanning electron microscopy indicated that the surface of the char for PC/KSS systems with KH‐602 and diphenylsilanediol hold a more cohesive and denser char structure when compared with the pure PC/KSS system. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
A new intumescent flame‐retardant (IFR) system consisting of expandable graphite (EG) and ammonium polyphosphate (APP) was applied in acrylonitrile–butadiene–styrene (ABS) resin. A synergistic effect between EG and APP on the flame retardancy of ABS was observed. Fixing the total loading of flame retardant at 15 wt %, the limited oxygen index (LOI) could reach 31 vol % at a weight ratio of 3 : 1 for EG and APP. While LOI values of EG‐ and APP‐filled ABS were only 26.0 and 21.5 vol % at the same loading, respectively. The UL‐94 vertical burning test suggested that samples with different ratios of EG and APP could all pass V‐0 rating while the samples containing EG and APP alone only passed V‐1 rating. Thermogravimetric analysis indicated that the addition of EG and APP (3 : 1 by weight) to ABS led to an increase in the amount of high‐temperature residue by 11.8 wt %, and a decrease of mass loss rate by 0.7%/°C compared with pure ABS. Scanning electronic microscopy revealed a homogeneous compact intumescent char layer of ABS/EG/APP samples. Based on our experiment and combined with others' previous studies, the synergistic mechanism is inferred. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
A novel flame retardant poly(3-aminopropyl methylsiloxane bis(3-hydroxy phenyl spirocyclic pentaerythritol bisphosphate)) (PSBPBP) in combination with talc was blended into polycarbonate (PC) by melt compounding. The flame retardancy and thermal stability of PC/PSBPBP/talc composites were investigated by limiting oxygen index (LOI) test, UL-94 rating test, thermogravimetric analysis (TGA), Raman spectroscopy (RS), and scanning electron microscope (SEM). The mechanical properties were also measured in this work. Increasing talc content leads to observed improvement on flame retardancy of PC composites. LOI value of PC/PSBPBP/10 wt % talc system was 34, and this system passed V0 rating in the UL-94 test. The char yield at 700°C was 28.2% and the onset decomposition temperature shifted up to 540°C for PC/10% PSBPBP/10% talc system in TGA. In the Raman measure, the R value and G linewidth of PC/PSBPBP with 10 wt % talc composite increased to 1.41 and 65 cm−1 from 1.12 and 43 cm−1 of pure PC, respectively. The Raman results suggest that the char residue of PC/PSBPBP with talc composites was denser and had better barrier property, which is agreement with the SEM results. Besides, talc had no remarkable influence on the mechanical properties of PC/PSBPBP composites. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
Red phosphorus encapsulated by polysiloxane (MRP) was prepared, and the chemical structure and morphology of MRP were characterized by FTIR and TEM, respectively. A series of flame retardant polycarbonate/acrylonitrile‐butadiene‐styrene containing MRP (PC/ABS/MRP) were prepared via melt‐blending. The flame retardance of PC/ABS/MRP was investigated by limiting oxygen index (LOI) and UL‐94 test. It was shown that the LOI value was increased to 27.7 and UL‐94 achieved a V‐0 rating at a 15 wt % loading of MRP. Cone calorimetric results showed that the peak of heat release rate (PHRR) of PC/ABS/15% MRP decreased from 452.7 to 198.0 kW/m2, and the total heat release decreased from 92.9 to 60.7 MJ/m2 compared with virgin PC/ABS. Thermal stability analysis showed that the char yield of the PC/ABS/15% MRP increased from 0 to 16.1 wt % under air atmosphere, and from 15.2 to 27.4 wt % under nitrogen atmosphere compared to virgin PC/ABS, respectively. The sample PC/ABS/15% MRP also showed excellent water resistance of flame retardance in 70°C water for 168 h. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
A novel flame retardant, tetra(5,5‐dimethyl‐1,3‐ dioxaphosphorinanyl‐2‐oxy) neopentane (DOPNP), was synthesized successfully, and its structure was characterized by FT‐IR, 1H NMR, and 31P NMR. The thermogravimetric analysis (TGA) results demonstrate that DOPNP showed a good char‐forming ability. Its initial decomposition temperature was 236.4°C based on 1% mass loss, and its char residue was 41.2 wt % at 600°C, and 22.9 wt % at 800°C, respectively. The flame retardancy and thermal degradation behavior of novel intumescent flame‐retardant polypropylene (IFR‐PP) composites containing DOPNP were investigated using limiting oxygen index (LOI), UL‐94 test, TGA, cone calorimeter (CONE) test, and scanning electron microscopy (SEM). The results demonstrate that DOPNP effectively raised LOI value of IFR‐PP. When the loading of IFR was 30 wt %, LOI of IFR‐PP reached 31.3%, and it passed UL‐94 V‐0. TGA results show that DOPNP made the thermal decomposition of IFR‐PP take place in advance; reduced the thermal decomposition rate and raised the residual char amount. CONE results show that DOPNP could effectively decrease the heat release rate peak of IFR‐PP. A continuous and compact char layer observed from the SEM further proved the flame retardance. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

11.
Tris(2‐hydroxyethyl) isocyanurate (THEIC) was used as charring agent and combined with ammonium polyphosphate (APP) to form an intumescent flame retardant (IFR) for polypropylene (PP). The flame retardancy and combustion performance of PP/IFR composite was tested by limiting oxygen index (LOI), UL‐94 vertical burning test and cone calorimeter. The results showed that PP/IFR composite had highest LOI of 34.8 and obtained V‐0 rating when 30 wt % IFR was loaded and mass ratio APP/THEIC was 2 : 1. The peak heat release (PHRR) and total heat release (THR) values of PP composite containing FRs were remarkably reduced compared with that of pure PP. However, water resistant test demonstrated the PP/IFR composite had poor flame retardant durability, both the LOI value and UL‐94 V‐rating decreased when PP/IFR composite was soaked in water at 70°C after 36 h. The degradation process and the char morphology of IFR and PP/IFR composite were investigated by TGA and SEM images. The possible reaction path between APP and THEIC in the swollen process was proposed. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41214.  相似文献   

12.
The synergistic effects of some metal oxides on novel intumescent flame retardant (IFR)–thermoplastic polyurethane (TPU) composites were evaluated by limiting oxygen index (LOI), vertical burning test (UL‐94), thermogravimetric analysis (TGA), cone calorimetry, and scanning electron microscopy. The experimental data indicated that the metal oxides enhanced the LOI value and restricted the dropping of the composites. The IFR–TPU composites passed the UL‐94 V‐0 rating test (1.6 mm) in the presence of magnesium oxide (MgO) and ferric oxide (Fe2O3) at 35 wt % IFR loading, whereas only the MgO‐containing IFR–TPU composite reached a UL‐94 V‐0 rating at 30 wt % IFR loading. The TGA results show that the metal oxides had different effects on the process of thermal degradation of the IFR–TPU compositions. MgO easily reacted with polyphosphoric acid generated by the decomposition of ammonium polyphosphate (APP) to produce magnesium phosphate. MgO and Fe2O3 showed low flammability and smoke emission due to peak heat release rate, peak smoke production rate, total heat release, and total smoke production (TSP). However, zinc oxide brought an increase in the smoke production rate and TSP values. Among the metal oxides, MgO provided an impressive promotion on the LOI value. The alkaline metal oxide MgO more easily reacted with APP in IFRs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
A novel phosphonate flame retardant additive bis(2,6‐dimethyphenyl) phenylphosphonate (BDMPP) was synthesized from phenylphosphonic dichloride and 2,6‐dimethyl phenol, and its chemical structure was characterized by Fourier transform infrared (FTIR) spectroscopy, 1H and 31P nuclear magnetic resonance. The prepared BDMPP and curing agent m‐phenylenediamine were blended into epoxy resins (EP) to prepare flame retardant EP thermosets. The effect of BDMPP on fire retardancy and thermal degradation behavior of EP/BDMPP thermosets was investigated by limiting oxygen index (LOI), vertical burning test (UL‐94), cone calorimeter and thermalgravimetric analysis (TGA). The morphologies of char residues of the EP thermosets were investigated by scanning electron microscopy (SEM) and the water resistant properties of thermosets were evaluated by putting the samples into distilled water at 70°C for 168 h. The results demonstrated that the cured EP/14 wt % BDMPP composites with the phosphorus content of 1.11 wt % successfully passed UL‐94 V‐0 flammability rating and the LOI value was as high as 33.8%. The TGA results indicated that the introduction of BDMPP promoted EP matrix decomposed ahead of time compared with that of pure EP and led to a higher char yield at high temperature. The incorporation of BDMPP enhanced the mechanical properties and reduced the moisture absorption of EP thermosets. The morphological structures of char residue revealed that BDMPP benefited to the formation of a more compact and homogeneous char layer on the materials surface during burning, which prevented the heat transmission and diffusion, limit the production of combustible gases and then lead to the reduction of the heat release rate. After water resistance tests, EP/BDMPP thermosets still remained excellent flame retardancy. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42765.  相似文献   

14.
Synergistic flame‐retardant effect of halloysite nanotubes (HNTs) on an intumescent flame retardant (IFR) in low‐density polyethylene (LDPE) was investigated by limited oxygen index (LOI), vertical burning test (UL‐94), thermogravimetric analysis (TGA), cone calorimeter (CC) test, and scanning electronic microscopy (SEM). The results of LOI and UL‐94 tests indicated that the addition of HNTs could dramatically increase the LOI value of LDPE/IFR in the case that the mass ratio of HNTs to IFR was 2/28 at 30 wt % of total flame retardant. Moreover, in this case the prepared samples could pass the V‐0 rating in UL‐94 tests. CC tests results showed that, for LDPE/IFR, both the heat release rate and the total heat release significantly decreased because of the incorporation of 2 wt % of HNTs. SEM observations directly approved that HNTs could promote the formation of more continuous and compact intumescent char layer in LDPE/IFR. TGA results demonstrated that the residue of LDPE/IFR containing 2 wt % of HNTs was obviously more than that of LDPE/IFR at the same total flame retardant of 30 wt % at 700°C under an air atmosphere, and its maximum decomposing rate was also lower than that of LDPE/IFR, suggesting that HNTs facilitated the charring of LDPE/IFR and its thermal stability at high temperature in this case. Both TGA and SEM results interpreted the mechanism on the synergistic effect of HNTs on IFR in LDPE, which is that the migration of HNTs to the surface during the combustion process led to the formation of a more compact barrier, resulting in the promotion of flame retardancy of LDPE/IFR. In addition, the mechanical properties of LDPE/IFR/HNTs systems were studied, the results showed that the addition of 0.5–2 wt % of HNTs could increase the tensile strength and the elongation at break of LDPE/IFR simultaneously. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40065.  相似文献   

15.
In this study, phospholipidated β‐cyclodextrin (PCD) was obtained by the condensation between β‐cyclodextrin and phenyl phosphonic acid dichloride, which was characterized by Fourier transform infrared (FTIR) spectra, 1H‐NMR, and thermogravimetric analysis (TGA). The thermal stability and flame retardancy of the poly(lactic acid) (PLA) blends [PLA–ammonium polyphosphate (APP)–PCD] were measured by TGA coupled to FTIR spectroscopy, vertical burning test (UL‐94), limiting oxygen index (LOI), and cone calorimetry tests. The results show that the mass ratio and loading amount of APP and PCD affected the properties of PLA. When the loading of APP and PCD was 30 wt % and the mass ratio of APP to PCD was 5:1, the highest LOI value of 42.6% (that of neat PLA was 19.7%) and a UL‐94 V0 rating were achieved, and the reduction of the total heat release was greater than 80%. Even when the total amount of APP and PCD was decreased to 20 wt % with the same mass ratio, the flame‐retardant PLA still can achieved a UL‐94 V0 rating. The improved performance was explained by the formation of an intumescent, continuous, contact char layer. Moreover, the reaction between APP and PCD contributed to the improvement of the thermal stability of the char residue. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46054.  相似文献   

16.
A novel flame retardant [9,10‐Dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxideÔtriphosphazene (DOPO–TPN)] based on phosphaphenanthrene and cyclotriphosphazene was synthesized and used to improve the flame retardancy of poly(ethylene terephthalate) (PET). The structure of DOPO–TPN was characterized by nuclear magnetic resonance, Fourier transform infrared spectroscope (FTIR), and elemental analysis. PET/DOPO–TPN composites with different amount of DOPO–TPN were prepared and the flame retardancy was determined by limiting oxygen index (LOI) and vertical burning test (UL‐94). With the incorporation of 5 wt % DOPO–TPN, the composite achieved a LOI value of 34% and UL‐94 V‐0 rating. The thermal properties of the PET/DOPO–TPN composites were investigated by thermogravimetric analysis. The flame retardant mechanism was investigated by pyrolysis‐gas chromatography/mass spectrometry (Py‐GC/MS), FTIR, and scanning electron microscopy (SEM). The Py‐GC/MS results showed that DOPO based fragments would exist in the gas phase during the pyrolysis of PET/DOPO–TPN composites which demonstrated that DOPO–TPN could act through gas‐phase action to exert flame retardant effect. The results of FTIR and SEM demonstrated that DOPO–TPN could promote the formation of compact and intact char residues to inhibit the heat and combustible gas transmission in condensed phase. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45246.  相似文献   

17.
A novel curing agent of epoxy resins (EPO), bis(3‐amino‐2‐thienyl) phenylphosphine oxide (ABTPPO), was synthesized and characterized by Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance (NMR), 13C NMR, and 31P NMR. ABTPPO was used as a flame retardant curing agent, and a novel halogen‐free flame retardant EPO composite was prepared. The flame retardant properties of ABTPPO‐cured EPO were evaluated in terms of limiting oxygen index and vertical burning test (UL‐94), while the combustion and thermal degradation behaviors were investigated by cone calorimeter test (CONE) and thermogravimetric analysis, respectively. The cured EPO composite passed the UL‐94 V‐1 and V‐2 rating when the sample thickness is 3.0 and 1.6 mm, respectively, and the limiting oxygen index value reached 38.3%. The morphological structures of char residue tested by scanning electron microscopy demonstrated that ABTPPO benefited to the formation of a more compact and homogeneous char layer on the materials' surface during burning, which protected the underlying matrix from decomposition and enhanced the flame retardancy of materials. The cured EPO showed excellent fire performance after the water resistance test because of the low water uptake (0.6 wt%), which demonstrated that the flame retardant EPO composite possessed excellent water resistance property. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
A novel inorganic compound, aluminum hypophosphite (AP), was synthesized successfully and applied as a flame retardant to glass‐fiber‐reinforced polyamide 6 (GF–PA6). The thermal stability and burning behaviors of the GF–PA6 samples containing AP (flame‐retardant GF–PA6) were investigated by thermogravimetric analysis, vertical burning testing (with a UL‐94 instrument), limiting oxygen index (LOI) testing, and cone calorimeter testing (CCT). The thermogravimetric data indicated that the addition of AP decreased the onset decomposition temperatures, the maximum mass loss rate (MLR), and the maximum‐rate decomposition temperature of GF–PA6 and increased the residue chars of the samples. Compared with the neat GF–PA6, the AP‐containing GF–PA6 samples had obviously improved flame retardancy: the LOI value increased from 22.5 to 30.1, and the UL‐94 rating went from no rating to V‐0 (1.6 mm) when the AP content increased from 0 to 25 wt % in GF–PA6. The results of CCT reveal that the heat release rate, total heat release, and MLR of the AP‐containing GF–PA6 samples were lower than those of GF–PA6. Furthermore, the higher additive amount of AP affected the mechanical properties of GF–PA6, but they remained acceptable. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Two phosphorus‐containing phenolic amines, a 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO)‐based derivative (DAP) by covalently bonding DOPO and imine (SB) obtained from the condensation of p‐phenylenediamine with salicylaldehyde, and its analog (AP) via the addition reaction between diethyl phosphite and SB, were used to prepare flame‐retardant epoxy resins. The burning behaviors and dynamic mechanical properties of epoxy thermosets were studied by limited oxygen index (LOI) measurement, UL‐94 test, and dynamic mechanical analysis. The flame‐retardant mechanisms of modified thermosets were investigated by thermogravimetric analysis, Py‐GC/MS, Fourier transform infrared, SEM, elemental analysis, and laser Raman spectroscopy. The results revealed that epoxy thermoset modified with DAP displayed the blowing‐out effect during UL‐94 test. With the incorporation of 10 wt % DAP, the modified thermoset showed an LOI value of 36.1% and V‐0 rating in UL‐94 test. The flame‐retardant mechanism was ascribed to the quenching and diluting effect in the gas phase and the formation of phosphorus‐rich char layers in the condensed phase. However, the thermoset modified with 10 wt % AP only showed an LOI value of 25.7% and no rating in UL‐94 test, which was possibly ascribed to the mismatching of charring process with gas emission process during combustion. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43953.  相似文献   

20.
An attractive intumescent flame retardant epoxy system was prepared from epoxy resin (diglycidyl ether of bisphenol A), low molecular weight polyamide (cure agent, LWPA), and ammonium polyphosphate (APP). The cured epoxy resin was served as carbonization agent as well as blowing agent itself in the intumescent flame retardant formulation. Flammability and thermal stability of the cured epoxy resins with different contents of APP and LWPA were investigated by limited oxygen index (LOI), UL‐94 test, and thermogravimetric analysis (TGA). The results of LOI and UL‐94 indicate that APP can improve the flame retardancy of LWPA‐cured epoxy resins. Only 5 wt % of APP can increase the LOI value of epoxy resins from 19.6 to 27.1, and improve the UL‐94 ratings, reaching V‐0 rating from no rating when the mass ratio of epoxy resin to LWPA is 100/40. It is much interesting that LOI values of flame retardant cured epoxy resins (FR‐CEP) increase with decreasing LWPA. The results of TGA, FTIR, and X‐ray photoelectron spectroscopy (XPS) indicate that the process of thermal degradation of FR‐CEP consists of two main stages: the first stage is that a phosphorus rich char is formed on the surface of the material under 500°C, and then a compact char yields over 500°C; the second stage is that the char residue layer can give more effective protection for the materials than the char formed at the first stage do. The flame retardant mechanism also has been discussed according to the results of TGA, FTIR, and XPS for FR‐CEP. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号