共查询到20条相似文献,搜索用时 31 毫秒
1.
A chelating polymer, poly(2,4‐dihydroxy benzophenone hydrazone–formaldehyde) [poly(DHBPH–F)], was synthesized by the polycondensation of 2,4‐dihydroxy benzophenone hydrazone with formaldehyde in the presence of oxalic acid as a catalyst. Poly(DHBPH–F) was characterized by Fourier transform infrared and 1H‐NMR spectral data. The molecular weight of the polymer was determined by gel permeation chromatography. Polychelates were obtained when the dimethylformamide solution of the polymer containing a few drops of ammonia was treated with an aqueous solution of metal ions. Elemental analysis of the polychelates indicated that the metal–ligand ratio was 1 : 2. The IR spectra of the polymer–metal complexes suggested that the metals were coordinated through the oxygen of the phenolic? OH group and the nitrogen of the azomethine group. The electron paramagnetic resonance and magnetic moment data indicated a square planar configuration for Cu(II) chelate and an octahedral structure for Ni(II) chelate. The thermogravimetric analysis, differential scanning calorimetry, and X‐ray diffraction data indicated that the incorporation of the metal ions significantly enhanced the degree of crystallinity. The polymerization initiation, electrical conductivity, and catalytic activity of the polychelates are discussed. Heavy‐metal ions [viz., Cu(II) and Ni(II)] were removed with this formaldehyde resin, and the metal‐ion uptake efficiency at different pH's, the nature and concentration of the electrolyte, and the reusability of the resin were also studied. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
2.
3.
The metal‐ion complexation behavior and catalytic activity of 4 mol % N,N′‐methylene bisacrylamide crosslinked poly(acrylic acid) were investigated. The polymeric ligand was prepared by solution polymerization. The metal‐ion complexation was studied with Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), and Zn(II) ions. The metal uptake followed the order: Cu(II) > Cr(III) > Mn(II) > Co(II) > Fe(III) > Zn(II) > Ni(II). The polymeric ligand and the metal complexes were characterized by various spectral methods. The catalytic activity of the metal complexes were investigated toward the hydrolysis of p‐nitrophenyl acetate (NPA). The Co(II) complexes exhibited high catalytic activity. The kinetics of catalysis was first order. The hydrolysis was controlled by pH, time, amount of catalyst, and temperature. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 272–279, 2004 相似文献
4.
8‐Hydroxy‐4‐azoquinolinephenylmethacrylate (8H4AQPMA) was prepared and polymerized in ethyl methyl ketone (EMK) at 65°C using benzoyl peroxide as free radical initiator. Poly(8‐hydroxy‐4‐azoquinolinephenylmethacrylate) poly(8H4AQPMA) was characterized by infrared and nuclear magnetic resonance techniques. The molecular weight of the polymer was determined by gel permeation chromatography. Cu(II) and Ni(II) complexes of poly(8H4AQPMA) were prepared. Elemental analysis of polychelates suggests that the metal‐ligand ratio is about 1 : 2. The polychelates were further characterized by infrared spectra, X‐ray diffraction, spectral studies, and magnetic moments. Thermal analyses of the polymer and polychelates were carried out in air. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1516–1522, 2006 相似文献
5.
A maleimide functionalized terpyridine, 4′(4‐maleimidophenyl)‐2, 2′ : 6′, 2″‐terpyridine, was synthesized and copolymerized with styrene via radical polymerization. The synthesized monomer was characterized by CHN elemental analysis, FT‐IR, 1H NMR, and Mass spectrometry. The structure of polymer was also confirmed by FT‐IR and UV‐Vis spectroscopy. The resulting polymer was soluble in chloroform and polar aprotic solvents, and showed an inherent viscosity of 1.5 dL/g in N,N‐dimethyl formamide at 25°C. The polymer solution in CHCl3/methanol showed a metal‐ligand charge‐transfer band of 586 nm upon addition of Fe(II) ion, exhibiting that coordination between terpyridine units and Fe(II) had occurred. The thermal stability of polymer before and after complexation with Fe(II) was examined by thermogravimetric analysis. For polymer before complexation, the weight loss started at 180°C whereas for complexed polymer it started at 260°C, which demonstrates good thermal stability of complexed polymer. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
6.
Poly(2‐acrylamido glycolic acid‐co‐2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid) [P(AGA‐co‐APSA)] was synthesized by radical polymerization in an aqueous solution. The water‐soluble polymer, containing secondary amide, hydroxyl, carboxylic, and sulfonic acid groups, was investigated, in view of their metal‐ion‐binding properties, as a polychelatogen with the liquid‐phase polymer‐based retention technique under different experimental conditions. The investigated metal ions were Ag+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Pb2+, and Cr3+, and these were studied at pHs 3, 5, and 7. P(AGA‐co‐APSA) showed efficient retention of all metal ions at the pHs studied, with a minimum of 60% for Co(II) at pH 3 and a maximum close to 100% at pH 7 for all metal ions. The maximum retention capacity (n metal ion/n polymer) ranged from 0.22 for Cd2+ to 0.34 for Ag+. The antibacterial activity of Ag+, Cu2+, Zn2+, and Cd2+ polymer–metal complexes was studied, and P(AGA‐co‐APSA)–Cd2+ presented selective antibacterial activity for Staphylococcus aureus with a minimum inhibitory concentration of 2 μg/mL. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
7.
Poly(8‐hydroxy‐4‐azoquinolinephenol‐formaldehyde) resin (8H4AQPF) was prepared by condensing 8‐hydroxy 4‐azoquinoline phenol with formaldehyde (1 : 1 mol ratio) in the presence of oxalic acid. Polychelates were obtained when the DMF solution of poly(8H4AQPF) containing a few drops of ammonia was treated with the aqueous solution of Cu(II) and Ni(II) ions. The polymeric resin and polymer–metal complexes were characterized with elemental analysis and spectral studies. The elemental analysis of the polymer–metal complexes suggested that the metal‐to‐ligand ratio was 1 : 2. The IR spectral data of the polychelates indicated that the metals were coordinated through the nitrogen and oxygen of the phenolic ? OH group. Diffuse reflectance spectra, electron paramagnetic resonance, and magnetic moment studies revealed that the polymer–metal complexes of the Cu(II) complexes were square planar and those of the Ni(II) complexes were octahedral. X‐ray diffraction studies revealed that the polymer metal complexes were crystalline. The thermal properties of the polymer and polymer–metal complexes were also examined. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1506–1510, 2006 相似文献
8.
Poly(1,3‐thiazol‐2‐yl‐carbomoyl) methyl methacrylate [poly(TCMMA)] is prepared in dimethyl sulfoxide using 2,2′‐azobisisobutyronitrile as an initiator at 60°C. Poly(TCMMA) is characterized by IR and 1H‐NMR spectroscopic techniques. Cadmium(II), copper(II), and nickel(II) chelates of poly(TCMMA) were synthesized. An elemental analysis of the polychelates suggests a metal/ligand ratio of 1:2. The polychelates are further characterized by IR and magnetic susceptibility measurements. The thermal properties of the polymer and metal chelates are also discussed. The molecular weights of the poly(TCMMA) are determined by the gel permeation chromatography technique. The antimicrobial activities of the polymer and metal chelates are tested against Staphylococcus aureus COWAN I (bacteria), Escherichia coli ATCC 25922 (bacteria), Listeria monocytogenes SCOTTA (bacteria), Bacillus subtilis LMG (bacteria), Enterobacter aeroginosa CCM 2531 (bacteria), Klebsiela pneumania FMCS (bacteria), Candida albicans CCM 314 (Mayo yeast), and Saccharamyces cerevisiae UGA 102 (Mayo yeast). © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3244–3251, 2003 相似文献
9.
A novel class of polymer–metal complexes was prepared by the condensation of a polymeric ligand with transition‐metal ions. The polymeric ligand was prepared by the addition polymerization of thiosemicarbazides with toluene 2,4‐diisocyanate in a 1 : 1 molar ratio. The polymeric ligand and its polymer–metal complexes were characterized by elemental analysis, thermogravimetric analysis, Fourier transform infrared spectroscopy, and 13C‐NMR and 1H‐NMR spectroscopy. The geometries of the central metal ions were determined by electronic spectra (UV–visible) and magnetic moment measurement. The antibacterial activities of all of the synthesized polymers were investigated against Bacillus subtilis and Staphylococcus aureus (Gram positive) and Escherichia coli and Salmonella typhi (Gram negative). These compounds showed excellent antibacterial activities against these bacteria with the spread plate method on agar plates, and the number of viable bacteria were counted after 24 h of incubation period at 37°C. The antibacterial activity results revealed that the Cu(II) chelated polyurea showed a higher antibacterial activity than the other metal‐chelated polyureas. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
10.
Oligo‐2‐[(4‐bromophenylimino)methyl]phenol (OBPIMP) was synthesized from the oxidative polycondensation reaction of 2‐[(4‐bromophenylimino)methyl]phenol (BPIMP) with air and NaOCl oxidants in an aqueous alkaline medium between 50 and 90°C. The yield of OBPIMP was found to be 67 and 88% for air and NaOCl oxidants, respectively. Their structures were confirmed by elemental and spectral such as IR, ultraviolet–visible spectrophotometer (UV–vis), 1H‐NMR, and 13C‐NMR analyses. The characterization was made by TG‐DTA, size exclusion chromatography, and solubility tests. The resulting complexes were characterized by electronic and IR spectral measurements, elemental analysis, AAS, and thermal studies. According to TG analyses, the weight losses of OBPIMP, and oligomer‐metal complexes with Co+2, Ni+2, and Cu+2 ions were found to be 93.04%, 59.80%, 74.23%, and 59.30%, respectively, at 1000°C. Kinetic and thermodynamic parameters of these compounds investigated by Coats‐Redfern, MacCallum‐Tanner, and van Krevelen methods. The values of the apparent activation energies of thermal decomposition (Ea), the reaction order (n), preexponential factor (A), the entropy change (ΔS*), enthalpy change (ΔH*), and free energy change (ΔG*) obtained by earlier‐mentioned methods were all good in agreement with each other. It was found that the thermal stabilities of the complexes follow the order Cu(II) > Co(II) > Ni(II). © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
11.
4‐(4′‐Methoxyphenyl)urazole (MPU) was prepared from 4‐methoxybenzoic acid in five steps. The reaction of monomer MPU with n‐isopropylisocyanate was performed at room temperature in N,N‐dimethylformamide solution, and the resulting bis‐urea derivative was obtained in high yield and was finally used as a model for polymerization reaction. The step‐growth polymerization reactions of monomer MPU with hexamethylene diioscyanate, isophorone diioscyanate, and toluene‐2,4‐diioscyanate were performed in N,N‐dimethylacetamide solution in the presence of pyridine as a catalyst. The resulting novel polyureas have an inherent viscosity (ηinh) in a range of 0.07–0.21 dL/g in DMF and sulfuric acid at 25°C. These polyureas were characterized by IR, 1H‐NMR, elemental analysis, and TGA. Some physical properties and structural characterization of these novel polyureas are reported. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1141–1146, 2002 相似文献
12.
New elemental sulfur‐based polymeric materials called poly(sulfur‐random‐divinylbenzene) [poly(S‐r‐DVB)] were synthesized by ring opening polymerization via inverse vulcanization technique in the presence of a mixture of o‐, m‐, and p‐diviniylbenzene (DVB) as a cross‐linker. A clear yellow/orange colored liquid was obtained from the elemental sulfur melted at 160 °C and then by adding various amounts of DVB to this liquid directly via a syringe at 200 °C viscous reddish brown polymeric materials were obtained. The copolymers are soluble in common solvents like tetrahydrofuran, dichloromethane, and chloroform, and they can be coated on any surface as a thin film by a spray coating technique. The characterization of the materials was performed by using nuclear magnetic resonance, fourier transform infrared, and Raman spectroscopies. The morphological properties were monitored via scanning electron microscope technique. Thermal analysis showed that an increase in the amount of DVB in the copolymers resulted in an increase in the thermal decomposition temperature. On the other hand, poly(S‐r‐DVB) copolymers exhibited good percent transmittance as 50% T between 1500 and 13,000 nm in electromagnetic radiation spectrum, which makes them good candidates to be amenable use in military and surveillance cameras. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43655. 相似文献
13.
The water‐soluble polymers poly(styrene sulfonic acid‐co‐maleic acid) and poly(acrylic acid‐co‐maleic acid) were investigated with respect to their metal‐ion‐binding ability with ultrafiltration. The studied metal ions included Ag(I), Cu(II), Ni(II), Co(II), Ca(II), Mg(II), Pb(II), Cd(II), Zn(II), Al(III), and Cr(III) ions. The retention properties of the polyelectrolytes for the metal ions depended strongly on the ligand type. As for the carboxylate ligands, with increasing concentration and pH, the metal‐binding affinity increased. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1091–1099, 2005 相似文献
14.
The polymeric ligand (resin) was synthesized by condensation of 2‐hydroxy‐4‐ethoxybenzophenone with ethane diol in the presence of polyphosphoric acid as a catalyst at 145°C for 10 h. The synthesized resin was used to study its ion exchange efficiency and to synthesize its polychelates with 4f‐block elements. The resin and its polychelates were characterized on the basis of elemental analyses, electronic spectra, magnetic susceptibilities, IR, NMR, and thermogravimetric analyses. The molecular weight was determined using number–average molecular weight (Mn ) by a vapor pressure osmometry (VPO) method. Ion‐exchange studies at various concentrations of different electrolytes, pH, and rate have been carried out for f‐block elements. Antimicrobial activity of all polychelates and catalytic activity of selected polychelates in organic synthesis have been studied. It is observed that resin can be used as an ion‐exchanger and polychelates are found to be an efficient catalysts and antimicrobial agents. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
15.
The crosslinked poly[N‐(3‐dimethylamino)propylmethacrylamide] [P(NDAPA)] and poly[N‐(3‐dimethylamino)propylmethacrylamide‐co‐acrylic acid] [P(NDAPA‐co‐AA)] were synthesized by radical polymerization. The resins were completely insoluble in water. The metal‐ion‐uptake properties were studied by a batch equilibrium procedure for the following metal ions: silver(I), copper(II), cadmium(II), zinc(II), lead(II), mercury(II), chromium(III), and aluminum(III). The P(NDAPA‐co‐AA) resin showed a lower metal‐ion affinity than P(NDAPA), except for Hg(II), which was retained at 71% at pH 2. At pH 5, the resin showed a higher affinity for Pb(II) (80%) and Cu(II) (60%), but its affinity was very low for Zn(II) and Cr(III). The polymer ligand–metal‐ion equilibrium was achieved during the first 20 min. By changing the pH, we found it possible to remove between 60 and 70% of Cd(II) and Zn(II) ions with (1M, 4M) HClO4 and (1M, 4M) HNO3. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5232–5239, 2006 相似文献
16.
A novel star polymer with β‐cyclodextrin (β‐CD) core and polyacrylonitrile arms and its metal complexes (Cu2+, Zn2+, and Ag+) were synthesized and characterized by means of infrared spectra, ultraviolet, GPC, X‐ray photoelectron spectroscopy, differential scanning calorimetry, cyclic voltammetry, and electron spin resonance. The results indicate that the monomers of acrylonitrile were initiated by functionalized β‐CD. The thermal properties of star polymer were improved greatly after transitional metal ions were introduced into it. The novel star polymer metal complexes possess properties of metal ions, polymer, and β‐CD. Furthermore, it shows stable electrochemical activity. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 相似文献
17.
4‐(4′‐Aminophenyl)urazole (AmPU) was prepared from 4‐nitrobenzoic acid in six steps. The reaction of AmPU with acetyl chloride was performed in N,N‐dimethylacetamide solutions at different ratios, and the resulting disubstituted and trisubstituted amide derivatives were obtained in high yields and were used as models for polymerization reactions. Polycondensation reactions of AmPU with succinyl chloride, suberoyl chloride, and sebacoyl chloride were performed with conventional solution polymerization techniques in the presence of different catalysts, such as pyridine, triethylamine, and dibutyltin dilaurate, and led to the formation of novel aliphatic polyamides. The resulting novel polyamides had inherent viscosities of 0.11–0.22 dL/g in dimethylformamide or H2SO4 at 25°C. These polyamides were characterized with IR, 1H‐NMR, elemental analysis, and thermogravimetric analysis. Some physical properties and structural characterization of these novel polyamides are reported. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3173–3185, 2004 相似文献
18.
Chelate polymers of azelaoyl bis‐N‐phenyl hydroxamic acid with Mn(II), Co(II), Ni(II), and Zn(II) were synthesized for the first time in a dimethylformamide (DMF) medium. These newly synthesized chelate polymers were characterized on the basis of several analytical techniques, namely, elemental analyses, infrared and reflectance spectral studies, magnetic moment, and thermal analyses. On the basis of data obtained with these techniques, the composition of the polymeric units, the structure, and the geometry were ascertained. It was found that the Mn(II) and Zn(II) chelate polymers had a tetrahedral geometry, whereas the Co(II) and Ni(II) chelate polymers were octahedral. Thermal analytical data clearly indicated that the Ni(II) chelate polymer was highly thermally stable relative to the Mn(II), Co(II), and Zn(II) chelate polymers. Since these chelate polymers are highly insoluble in almost all the organic solvents, including alcohol, acetone, chloroform, carbon tetrachloride, DMF, and DMSO, and have high thermal stability, they may be used as surface‐coating materials and as thermally stable materials. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 273–278, 2006 相似文献
19.
A new copper‐containing Schiff‐base diamine, benzil bis(thiosemicarbazonato)copper(II) (CuLH4), was synthesized in two steps from benzil bisthiosemicarbazone (LH6). The ligand LH6 and the complex CuLH4 were characterized with Fourier transform infrared spectroscopy, 1H‐NMR, and elemental analysis. CuLH4 was used to prepare novel polyamides. The low‐temperature solution polycondensation of the complex CuLH4 with various aromatic and aliphatic diacid chlorides afforded copper‐containing Schiff‐base polyamides with inherent viscosities of 0.25–0.36 dL/g in N,N‐dimethylformamide (DMF) and 0.75 dL/g in H2SO4 at 25°C. The polyamides were generally soluble in a wide range of solvents, such as DMF, N,N‐dimethylacetamide, tetrahydrofuran, dimethyl sulfoxide, ethyl acetate, tetrachloroethane, hexamethylene phosphoramide, N‐methylpyrrolidone, and pyridine. Thermal analysis showed that these polyamides were practically amorphous, decomposed above 270°C, and exhibited 50% weight loss at and above 400°C. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
20.
Two novel chelating resins are prepared by anchoring diethylenetriamine bis‐ and mono‐furaldehyde Schiff bases onto the macroporous GMA‐DVB copolymer beads and utilized for the adsorption towards Cu(II), Co(II), Ni(II), and Zn(II). FTIR spectra show that Schiff base groups have been successfully introduced into the polymer matrix and the chelating resins can form complexes with the metal ions. The chelating resins show a higher adsorption capacity toward Cu(II). The conductivity method can be used for determining the adsorption kinetics of the resins towards metal ions. The results show that the adsorption rates towards Cu(II) are much higher than those towards other ions and pseudo second‐order and intraparticle diffusion models can be applied to treat the adsorption amount‐time data. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献