首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this study, magnetic chitosan modified with thiosemicarbazide (TSC‐Fe3O4/CTS) was facilely synthesized with glutaraldehyde as the crosslinker, and its application for removal of Cu(II) ions was investigated. The as‐prepared TSC‐Fe3O4/CTS was characterized by Fourier transform infrared spectroscopy (FTIR), X‐ray powder diffraction (XRD), and scanning electron microscopy (SEM). The results showed that TSC‐Fe3O4/CTS has high adsorption capacity and selectivity towards Cu(II) ions. Adsorption experiments were carried out with different parameters such as pH, solution temperature, contact time and initial concentration of Cu(II) ions. The adsorption process was better described by the pseudo‐second‐order model. The sorption equilibrium data was fitted well with the Langmuir isotherm model and the maximum adsorption capacity toward Cu(II) ions was 256.62 mg/g. The thermodynamic parameters indicated that the adsorption process of Cu(II) ions was exothermic spontaneous reaction. Moreover, this adsorbent showed excellent reusability and the adsorption property remained stable after five cycles. This adsorbent is believed to be one of the promising and favorable adsorbent for the removal of Cu(II) ions from aqueous solution. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44528.  相似文献   

2.
In this work, the snail shell/hydroxyapatite/chitosan composite was prepared as adsorbent. The adsorption potential of the composite was studied for simultaneous sorption behavior of Zn(Ⅱ) and Cu(Ⅱ) ions in a batch system. Chitosan and hydroxyapatite(HAP) were extracted from shrimp shell and bone ash,respectively, so this is a low cost natural composite. To prepare the composite, chitosan was dissolved in acetic acid, then HAP and snail shell powders were added to the chitosan solution. The morphology and characterization of the composite was studied by SEM and EDX analysis. Atomic adsorption was used to measure the amount of the ions. Experimental parameters were optimized with Design Expert Software and five parameters such as the concentration of ions, p H, adsorbent amount and contact time were studied at room temperature. Optimized value for the parameters of Zn(Ⅱ) and Cu(Ⅱ) concentrations, p H, adsorbent dose, and contact time were 3.01 mg·L~(-1), 5.5, 0.02 g and 95 min, respectively. The adsorption isotherms for Zn(Ⅱ) and Cu(Ⅱ) showed Langmuir and Tempkin, respectively. Kinetic and equilibrium studies showed the experimental data of Zn(Ⅱ) and Cu(Ⅱ) ions were best described by the pseudo-second-order model. Studies on thermodynamic show the adsorption process were physical and spontaneous.  相似文献   

3.
Composites of postconsumer high‐density polyethylene with agave fiber were prepared by single‐screw extrusion with azodicarbonamide as a foaming agent to increase the surface area; the composite pellets were coated with chitosan afterward. A chemical pretreatment was applied to the pellets to enhance the chitosan gel compatibility. The adsorption capacities of the composites coated with chitosan were evaluated for Cd(II) and Cu(II) removal from aqueous solutions. The coated composites were characterized by scanning electron microscopy, attenuated total reflectance infrared spectroscopy, and X‐ray photoelectron spectroscopy. Atomic absorption spectroscopy was used to measure metal uptake in batch adsorption studies. The results of this study demonstrated the composites' ability to immobilize chitosan on their surfaces and their capacity to adsorb metal ions. The equilibrium isotherms for Cd(II) and Cu(II) adsorption on the chitosan‐coated composites were described by the Langmuir model. This material represents an attractive low‐cost recycled material for adsorbing metal ions from polluted waters. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
A new chemically modified chitosan hydrogel with 2,5‐dimercapto‐1,3,4‐thiodiazole (CTS‐DMTD) has been synthesized. The structure of CTS‐DMTD was confirmed by elemental analysis and FTIR. It was found that adsorption capacities were significantly affected by the pH of solution, with optimum pH values of 3.0 for Au(III), 2.0 for Pd(II) and Pt(IV). The saturated adsorption capacities were 198.5 mg/g for Au(III), 16.2 and 13.8 mg/g for Pd(II) and Pt(IV), respectively. Langmuir and Freundlich isotherm adsorption models were applied to analyze the experimental data. The results showed that adsorption isotherms of Pd(II) and Pt(IV) could be well described by the Langmuir equation. The adsorption kinetic investigations indicated that the kinetic data correlated well with the pseudo‐second‐order model. The recovery experimental data showed that CTS‐DMTD had a higher affinity toward Au(III), Pd(II), and Pt(IV) in the coexistence system containing Cu(II), Fe(III), Cd(II), Ni(II), Mg(II), and Zn(II). The studies of desorption were carried out using various reagents and the optimum effect was obtained using thiourea. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
The binary chitosan/silk fibroin composite synthesized by reinforcement of silk fibroin fiber into the homogenous solution of chitosan in formic acid was used to investigate the adsorption of two metals of Cu(II) and Cd(II) ions in an aqueous solution. The binary composite was characterized by Fourier transform infrared and scanning electron microscopy. The optimum conditions for adsorption by using a batch method were evaluated by changing various parameters such as contact time, adsorbent dose, and pH of the solution. The experimental isotherm data were analyzed using the Freundlich and Langmuir equations, indicated to be well fitted to the Langmuir isotherm equation under the concentration range studied, by comparing the correlation co‐efficient. Adsorption kinetics data were tested using pseudo‐first‐order and pseudo‐second‐order models. Kinetics studies showed that the adsorption followed a pseudo‐second‐order reaction. Due to good performance and low cost, this binary chitosan/silk fibroin composite can be used as an adsorbent for removal of Cu(II) and Cd(II) from aqueous solutions. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

6.
《分离科学与技术》2012,47(6):1365-1381
Abstract

A composite chitosan biosorbent (CCB) was prepared by coating chitosan on to ceramic alumina. The adsorption characteristics of the sorbent for copper and nickel ions were studied under batch equilibrium and dynamic flow conditions at pH 4.0. The equilibrium adsorption data were correlated with Langmuir, Freundlich, and Redlich‐Peterson models. The ultimate monolayer capacities, obtained from Langmuir isotherm, were 86.2 and 78.1 mg/g of chitosan for Cu(II) and Ni(II), respectively. In addition, dynamic column adsorption studies were conducted to obtain breakthrough curves. After the column was saturated with metal ions, it was regenerated with 0.1 M sodium hydroxide. The regenerated column was used for a second adsorption cycle.  相似文献   

7.
Ion‐imprinted chitosan (CS) microspheres (MIPs) were prepared with Cu(II) as a template and epichlorohydrin as a crosslinker for the selective separation of Cu(II) from aqueous solution. The microspheres showed a higher adsorption capacity and selectivity for the Cu(II) ions than nonimprinted chitosan microspheres (NMIPs) without a template. The results show that the adsorption of Cu(II) on the CS microspheres was affected by the initial pH value, initial Cu(II) concentration, and temperature. The kinetic parameters of the adsorption process indicated that the adsorption followed a second‐order adsorption process. Equilibrium experiments showed very good fits with the Langmuir isotherm equation for the monolayer adsorption process. The maximum sorption capacity calculated from the Langmuir isotherm was 201.66 mg/g for the Cu–MIPs and 189.51 mg/g for the NMIPs; these values were close to the experimental ones. The selectivity coefficients of Cu(II) and other metal ions on the NMIPs indicated a preference for Cu(II). © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
Porous chitosan–tripolyphosphate beads, prepared by the ionotropic crosslinking and freeze‐drying, were used for the adsorption of Cu(II) ion from aqueous solution. Batch studies, investigating bead adsorption capacity and adsorption isotherm for the Cu(II) ion, indicated that the Cu(II) ion adsorption equilibrium correlated well with Langmuir isotherm model. The maximum capacity for the adsorption of Cu(II) ion onto porous chitosan–tripolyphosphate beads, deduced from the use of the Langmuir isotherm equation, was 208.3 mg/g. The kinetics data were analyzed by pseudo‐first, pseudo‐second order kinetic, and intraparticle diffusion models. The experimental data fitted the pseudo‐second order kinetic model well, indicating that chemical sorption is the rate‐limiting step. The negative Gibbs free energy of adsorption indicated a spontaneous adsorption, while the positive enthalpy change indicated an endothermic adsorption process. This study explored the adsorption of Cu(II) ion onto porous chitosan–tripolyphosphate beads, and used SEM/EDS, TGA, and XRD to examine the properties of adsorbent. The use of porous chitosan–tripolyphosphate beads to adsorb Cu(II) ion produced better and faster results than were obtained for nonporous chitosan–tripolyphosphate beads. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
The adsorption of Cu(II) ions onto chitosan and cross-linked chitosan beads has been investigated. Chitosan beads were cross-linked with glutaraldehyde (GLA), epichlorohydrin (ECH) and ethylene glycol diglycidyl ether (EGDE) in order to obtain sorbents that are insoluble in aqueous acidic and basic solution. Batch adsorption experiments were carried out as a function of pH, agitation period, agitation rate and concentration of Cu(II) ions. A pH of 6.0 was found to be a optimum for Cu(II) adsorption on chitosan and cross-linked chitosan beads. Isotherm studies indicate Cu(II) can be effectively removed by chitosan and cross-linked chitosan beads. Adsorption isothermal data could be well interpreted by the Langmuir equation. Langmuir constants have been determined for chitosan and cross-linked chitosan beads. The experimental data of the adsorption equilibrium from Cu(II) solution correlated well with the Langmuir isotherm equation. The uptakes of Cu(II) ions on chitosan beads were 80.71 mg Cu(II)/g chitosan, on chitosan-GLA beads were 59.67 mg Cu(II)/g chitosan-GLA, on chitosan-ECH beads were 62.47 mg Cu(II)/g chitosan-ECH and on chitosan-EGDE beads were 45.94 mg Cu(II)/g chitosan-EGDE. The Cu(II) ions can be removed from the chitosan and cross-linked chitosan beads rapidly by treatment with an aqueous EDTA solution and at the same time the chitosan and cross-linked chitosan beads can be regenerated and also can be used again to adsorb heavy metal ions.  相似文献   

10.
《分离科学与技术》2012,47(8):1235-1243
Removal of Cu(II) and Ni(II) from aqueous solutions by a novel xanthated carboxymethyl chitosan (XCC) was investigated. XCC obtained was characterized by FTIR, SEM, EDX, and XRD. The adsorption ability of chitosan and XCC toward Cu(II) and Ni(II) was compared. The effect of pH (2.0–7.0), contact time (5–60 min), and adsorption isotherms on adsorption were also investigated. It was observed that the modified chitosan XCC showed a remarkable increase in Cu(II) and Ni(II) adsorption as compared to chitosan and displayed a quick adsorption performance. Further, The Langmuir isotherm was found to provide the best correlation of the experimental data and the adsorption capacity obtained from the Langmuir model was 174.2 mg/g and 128.4 mg/g for Cu(II) and Ni(II), respectively. FTIR and UV spectra suggested that the amino groups, carboxyl groups, and xanthate groups of XCC participated in the adsorption.  相似文献   

11.
《分离科学与技术》2012,47(1):111-122
Abstract

A possibility of Cr(VI) removal by the adsorption method is discussed in the paper. An adsorbent were hydrogel chitosan beads are produced by the phase inversion method (by changing pH). The possibility of removing Cr(VI) ions by both pure chitosan hydrogel and its chelate compounds (chitosan cross‐linked with Cu(II) and Ag(I) ions) was investigated. The adsorption proceeded from the solutions of potassium dichromate and ammonium dichromate (NH4)2Cr2O7 and K2Cr2O7. The process rates and adsorption isotherms were determined and described by relevant equations. The process rate was described by the pseudo‐ and second‐order equations, and adsorption equilibria by the Langmuir equations. A slight advantageous change in adsorption properties of chitosan beads was revealed after cross‐linking (for chromium concentration up to 10 g/dm3). A maximum adsorption was 1.1 gCr/g chitosan. Results of the studies show that chitosan hydrogel proves useful in the removal of Cr(VI) ions, additionally, cross‐linking with Cu(II) and Ag(I) ions has an advantageous effect in the case of low‐concentrated solutions.  相似文献   

12.
To further improve the adsorption capacity of chitosan (CTS), a series of novel chitosan/organo‐montmorillonite nanocomposites (CTS/OMMT) were synthesized and the adsorption abilities for Congo red (CR) investigated in this study. The nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction analysis (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the results indicated that an exfoliated nanostructure was formed in CTS/OMMT nanocomposites. Compared with the adsorption capacity of OMMT (192.4 mg g?1), CTS/OMMT with an amount of cetyltrimethylammonium bromide equal to 0.75 CEC of MMT and molar ratio of CTS to OMMT of 1:10 exhibited the higher adsorption capacity (290.8 mg g?1). The adsorption behaviours of OMMT and CTS/OMMT showed that the adsorption kinetics and isotherms were in good agreement with a pseudo‐second‐order equation and the Langmuir equation, respectively. The IR spectra revealed that a chemical interaction occurred between CTS/OMMT and CR. The adsorption capacity of CTS/OMMT nanocomposite was higher than that of other absorbents; this study suggested that the CTS/OMMT nanocomposite could be used as an adsorbent to remove CR dye from aqueous solution. Copyright © 2007 Society of Chemical Industry  相似文献   

13.
A new type of grafted chitosan‐crown ether was synthesized using mesocyclic diamine crown ether as the grafting agent. The C2 amino group in chitosan was protected from the reaction between benzaldehyde and chitosan to form N‐benzylidene chitosan (CTB). After reaction with mesocyclic diamine crown ether of the epoxy propane group to give mesocyclic diamine‐N‐benzalidene chitosan (CTBA), the Schiff base was removed in a dilute ethanol hydrochloride solution to obtain chitosan‐crown ether (CTDA). Its structure was confirmed by FTIR spectra analysis and X‐ray diffraction analysis. Its static adsorption properties for Pb(II), Cu(II), Cd(II), and Cr(III) were studied. The experimental results showed that the grafted chitosan‐crown ether has high selectivity for the adsorption of Cu(II) in the presence of Pb(II), Cu(II), and Cd(II) and its adsorption selectivity is better than that of chitosan. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1255–1260, 2000  相似文献   

14.
The new macrocyclic polyamine derivatives of chitosan were synthesized by reacting epoxy‐activated macrocyclic tetra‐amine with the C6 hydroxyl or C2 amino group in chitosan. The obtained copolymers (CTS‐OM, CTS‐NM) contain amino functional groups, the secondary amines, and more polar hydroxyl groups in its skeleton. Elemental analysis, infrared spectra, and solid‐state 13C‐NMR analysis confirmed their structures. The adsorption behavior of the macrocyclic polyamine grafted chitosan for Ag+, Pb2+, Hg2+, and Cr3+ was investigated. The experimental results showed that the two novel derivatives of chitosan have high adsorption capacity and good selectivity for some metal ions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 407–412, 2005  相似文献   

15.
Thiourea‐formaldehyde (TUF), a well‐known chelating resin, has been synthesized and it was used in the adsorption, selective separation, and concentration of Pd(II) ions from Fe(III), Co(II) Ni(II), and Cu(II) base metal ions. The composition of the synthesized resin was determined by elemental analysis. The effect of initial acidity/pH and the adsorption capacity for Pd(II) ions were studied by batch technique. The adsorption and separation of Pd(II) were then examined by column technique. FTIR spectra and SEM/EDS analysis were also recorded before and after the adsorption of Pd(II). The optimum pH was found to be 4 for the adsorption. The adsorption data fitted well to the Langmuir isotherm. The maximum adsorption capacity of the TUF resin for Pd(II) ions was found to be 31.85 mg g−1 (0.300 mmol g−1). Chelating mechanism was effective in the adsorption. Pd(II) ions could be separated efficiently from Fe(III), Cu(II), Ni(II), and Co(II) ions using TUF resin. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
Two new adsorbents [β‐cyclodextrin–chitosan (β‐CD–CTS) and β‐cyclodextrin‐6–chitosan (β‐CD‐6‐CTS)] were synthesized by the reaction of β‐cyclodextrin (β‐CD) with epoxy‐activated chitosan (CTS) and the sulfonation of the C‐6 hydroxyl group of β‐cyclodextrin with CTS, respectively. Their structures were confirmed by IR spectral analysis and X‐ray diffraction analysis, and their apparent amount of grafting was determined by ultraviolet spectroscopy. The adsorption properties of β‐CD‐CTS and β‐CD‐6‐CTS for p‐dihydroxybenzene were studied. The experimental results showed that the two new adsorbents exerted adsorption on the carefully chosen target. The highest saturated capacity of p‐dihydroxybenzene of β‐CD‐CTS and β‐CD‐6‐CTS were 51.68 and 46.41 mg/g, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 860–864, 2004  相似文献   

17.
丙酮酸改性壳聚糖对金属离子的吸附性能研究   总被引:15,自引:1,他引:14  
丙酮酸经Schiff碱反应对壳聚糖进行修饰 ,合成了高取代的水溶性丙酮酸缩壳聚糖 (PCTS) ,研究了PCTS、SCTS(水杨醛改性壳聚糖 )、CTS(壳聚糖 )对Cu(Ⅱ )、Zn(Ⅱ )、Co(Ⅱ )的静态吸附性能 ,并采用正交实验法考察了金属离子浓度、介质酸度、吸附量和吸附时间对吸附剂去除金属离子能力的影响。结果表明 ,PCTS的吸附性能优于SCTS与CTS ,对Cu(Ⅱ )、Zn(Ⅱ )、Co(Ⅱ )的吸附容量 (pH =7 0 )分别为 2 79 56、1 96 63、70 2 1mg/g ,金属离子浓度、介质酸度对吸附性能影响大 ,而吸附剂用量、吸附时间对吸附性能影响较小。  相似文献   

18.
The wheat straw cellulose‐based hydrogels were synthesized by graft copolymerization followed by semi‐interpenetrating network technology. The prepared hydrogels were characterized through various methods including Fourier transform infrared spectra, scanning electron microscope, thermogravimetric analysis, and X‐ray photoelectron spectroscopy. Batch adsorption experiments were carried out to investigate the adsorption performances of hydrogels toward Cu(II) ions. The results suggested that the introduction of semi‐interpenetrating network polymers, sodium alginate and poly(vinyl alcohol), could greatly enhance the adsorption property of hydrogels. And the wheat straw cellulose‐g‐poly(potassium acrylate)/sodium alginate hydrogel showed a highest Cu(II) ions adsorption capacity of 130 mg/g. The equilibrium isotherm and adsorption kinetics were also studied. Besides, the mass transfer coefficients and the thermodynamics of Cu(II) ions adsorption were also probed. Finally, the X‐ray photoelectron spectroscopy analysis further demonstrated that the Cu(II) ions adsorption was mainly via complexation reaction of ? NH2 and O‐containing groups in hydrogels. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46680.  相似文献   

19.
Heavy metal ion is one of the major environmental pollutants. In this study, a Cu(II) ions imprinted magnetic chitosan beads are prepared to use chitosan as functional monomer, Cu(II) ions as template, Fe3O4 as magnetic core and epichlorohydrin and glutaraldehyde as crosslinker, which can be used for removal Cu(II) ions from wastewater. The kinetic study shows that the adsorption process follows the pseudo-second-order kinetic equations. The adsorption isotherm study shows that the Langmuir isotherm equation best fits for the monolayer adsorption processes. The selective adsorption properties are performed in Cu(II)/Zn(II), Cu(II)/Ni(II), and Cu(II)/Co(II) binary systems. The results shows that the IIMCD has a high selectivity for Cu(II) ions in binary systems. The mechanism of IIMCD recognition Cu(II) ions is also discussed. The results show that the IIMCD adsorption Cu(II) ions is an enthalpy controlled process. The absolute value of ΔH (Cu(II)) and ΔS(Cu(II)) is greater than ΔH (Zn(II), Ni(II), Co(II)) and ΔS (Zn(II), Ni(II), Co(II)), respectively, this indicates that the Cu(II) ions have a good spatial matching with imprinted holes on IIMCD. The FTIR and XPS also demonstrates the strongly combination of function groups on imprinted holes in the suitable space position. Finally, the IIMCD can be regenerated and reused for 10 times without a significantly decreasing in adsorption capacity. This information can be used for further application in the selective removal of Cu(II) ions from industrial wastewater.  相似文献   

20.
An interpenetration network (IPN) was synthesized from 2‐hydroxyethyl methacrylate (HEMA) and chitosan, p(HEMA/chitosan) via UV‐initiated photo‐polymerization. The selectivity to different heavy metal ions viz Cd(II), Pb(II), and Hg(II) to the IPN membrane has been investigated from aqueous solution using bare pHEMA membrane as a control system. Removal efficiency of metal ions from aqueous solution using the IPN membranes increased with increasing chitosan content and initial metal ions concentrations, and the equilibrium time was reached within 60 min. Adsorption of all the tested heavy metal ions on the IPN membranes was found to be pH dependent and maximum adsorption was obtained at pH 5.0. The maximum adsorption capacities of the IPN membrane for Cd(II), Pb(II), and Hg(II) were 0.063, 0.179, and 0.197 mmol/g membrane, respectively. The adsorption of the Cd(II), Hg(II), and Pb(II) metal ions on the bare pHEMA membrane was not significant. When the heavy metal ions were in competition, the amounts of adsorbed metal ions were found to be 0.035 mmol/g for Cd(II), 0.074 mmol/g for Hg(II), and 0.153 mmol/g for Pb(II), the IPN membrane is significantly selective for Pb(II) ions. The stability constants of IPN membrane–metal ions complexes were calculated by the method of Ruzic. The results obtained from the kinetics and isotherm studies showed that the experimental data for the removal of heavy metal ions were well described with the second‐order kinetic equations and the Langmuir isotherm model. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号