首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Coumarin is successfully incorporated in poly(ethylene oxide)‐poly(propylene oxide) block copolymers functionalized with terminal alkynes, PEO‐b‐PPO‐b‐GPE, by click reactions at atmospheric pressure and in CO2 supercritical conditions (scCO2). The presence of glycidyl propargyl ether (GPE), an alkynyl‐terminated monomer, in the copolymer chain allows the covalent attachment of the coumarin by click chemistry, obtaining polymer–drug conjugates. First, the most suitable synthesis procedure for the above‐mentioned copolymers was established. Then, the click reactions were carried out confirming the coumarin attachment by Fourier transform IR and 1H NMR analyses, achieving good yields in both cases with a coumarin content of about 9.3 wt% and avoiding the use of toxic solvents in the case of scCO2. In addition, thanks to the amphiphilic character of the copolymer due to the presence of hydrophilic (PEO) and hydrophobic (PPO) segments, micelle formation is also possible and was confirmed by dynamic light scattering and high resolution SEM. Finally, coumarin incorporation was achieved by micelle formation using the direct dissolution method in order to compare the polymer–drug system properties. This second route allows a drug entrapment efficiency of 14 wt% to be reached. In both cases, the size of the polymeric micelles obtained is in a suitable range to enable permeability. However, an interesting point is the reduction in the size of the micelles with increase in the GPE percentage and with the covalent attachment of the coumarin to the copolymer, which is supposed to improve their permeability. © 2019 Society of Chemical Industry  相似文献   

2.
Temperature, pH, and reduction triple‐stimuli‐responsive inner‐layer crosslinked micelles as nanocarriers for drug delivery and release are designed. The well‐defined tetrablock copolymer poly(polyethylene glycol methacrylate)–poly[2‐(dimethylamino) ethyl methacrylate]–poly(N‐isopropylacrylamide)–poly(methylacrylic acid) (PPEGMA‐PDMAEMA‐PNIPAM‐PMAA) is synthesized via atom transfer radical polymerization, click chemistry, and esterolysis reaction. The tetrablock copolymer self‐assembles into noncrosslinked micelles in acidic aqueous solution. The core‐crosslinked micelles, shell‐crosslinked micelles, and shell–core dilayer‐crosslinked micelles are prepared via quaternization reaction or carbodiimide chemistry reaction. The crosslinked micelles are used as drug carriers to load doxorubicin (DOX), and the drug encapsulation efficiency with 20% feed ratio reached 59.2%, 73.1%, and 86.1%, respectively. The cumulative release rate of DOX is accelerated by single or combined stimulations. The MTT (3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) assay verifies that the inner‐layer crosslinked micelles show excellent cytocompatibility, and DOX‐loaded micelles exhibit significantly higher inhibition for HepG2 cell proliferation. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46714.  相似文献   

3.
Star‐shaped amphiphilic polymeric surfactants comprising a hydrophobic polyhedral oligomeric silsesquioxane (POSS) core and hydrophilic poly(ethylene glycol) (PEG) arms with various chain lengths are successfully synthesized using copper(I)‐catalysed azide–alkyne cycloaddition (CuAAC) click reaction. Their chemical structures and molecular characteristics are clearly confirmed using Fourier transform infrared and 1H NMR spectroscopies and gel permeation chromatography, and no homopolymer is found after CuAAC click reaction. Aqueous solutions of these star‐shaped polymers have been investigated using atomic force and transmission electron microscopies and dynamic light scattering studies and it is found that they can self‐assemble into micelles. The sizes of the micelles can be adjusted by the length of the PEG arms, where longer chains not only lead to increased micelle sizes, but also reduce the contact angle values. Moreover, the melting points and root mean square roughness of the obtained star‐shaped polymers are slightly increased on increasing the chain length of the PEG arms. © 2017 Society of Chemical Industry  相似文献   

4.
Poly(?‐caprolactone)diol (PCL)–functionalized nanodiamonds (f‐NDs) were synthesized using a click chemistry reaction between the azide‐moiety PCL and alkyne‐moiety NDs and were incorporated into shape memory polyurethane (PU) at f‐ND concentrations of 0, 0.5, 1, and 2 wt % to produce high‐performance shape memory nanocomposites. The PU/f‐ND nanocomposites exhibited better shape recovery, shape recovery stress, and breaking stresses than pure PU. Shape recovery of greater than 95% was demonstrated for all the nanocomposites in the third cycle, and the shape recovery stresses increased significantly with the f‐ND content. These enhanced mechanical and shape recovery properties are ascribed to increased interactions between the f‐NDs and PU matrix due to incorporation of click‐coupled f‐NDs. The click‐coupled NDs can be used as nanofillers to enhance the mechanical and shape memory properties of polymers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45465.  相似文献   

5.
A facile synthetic pathway to a multi‐arm star graft polymer has been developed via a grafting‐onto strategy using a combination of a reversible addition–fragmentation chain transfer (RAFT) arm‐first technique and aldehyde–aminooxy click reaction. A star backbone bearing aldehyde groups was prepared by the RAFT copolymerization of acrolein (Ac), an existing commercial aldehyde‐bearing monomer, with styrene (St), followed by crosslinking of the resultant poly(St‐co‐Ac) macro‐RAFT agent using divinylbenzene. The aldehyde groups on the star backbone were then used as clickable sites to attach poly(ethylene glycol) (PEG) side chains via the click reaction between the aldehyde groups and aminooxy‐terminated PEG, leading to a structurally well‐defined star graft copolymer with arms consisting of poly(St‐co‐Ac) as backbone and PEG as side chains. Crystalline morphology and self‐assembly in water of the obtained star graft copolymer were also investigated. Opportunities are open for the star graft copolymer to form either multimolecular micelles or unimolecular micelles via control of the number of grafted PEG side chains. © 2013 Society of Chemical Industry  相似文献   

6.
A new, asymmetrical zinc phthalocyanine (aZnPc)‐functional photocurable copolymer was prepared by the combination of atom transfer radical polymerization and copper (I)‐catalyzed azide‐alkyne cyclo‐addition (CuAAC) click reaction and used as polymer matrix of polymer dispersed liquid crystal (PDLC) film. For this purpose, aZnPc was prepared through statistical condensation of 4‐tert‐butylphthalonitrile and 4‐pent‐4‐ynyloxyphthalonitrile. Double CuAAC click reaction between azido‐functional poly(methyl methacrylate‐co‐2‐(2‐bromoisobutyryloxy)‐ethyl methacrylate), terminal alkynyl‐substituted aZnPc, and 4‐ethynyl‐N,N‐dimethyl aniline yielded photocurable aZnPc‐functional copolymer. Thereby, synthesized copolymer was crosslinked in the presence of liquid crystalline mesogen 4′‐(octyloxy)‐4‐biphenylcarbonitrile by ultraviolet irradiation using benzophenone as initiator and ethylene glycol dimethacrylate as difunctional crosslinker. Thermal and optical properties of PDLC film were investigated by using differential scanning calorimetry and polarized optical microscopy. Smectic A liquid crystal mesophases were observed in both PDLC film and its mesogenic component 4′‐(octyloxy)‐4‐biphenylcarbonitrile. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41574.  相似文献   

7.
Poly(ε‐caprolactone)‐block‐poly(vinyl acetate) (PCL‐b‐PVAc) block copolymers were synthesized using two approaches: a ‘coupling’ approach using click chemistry reaction and a ‘macroinitiator’ route. Different copolymers, varying by their block lengths, were prepared with both methods. PCL is a semi‐crystalline polymer, and consequently PCL blocks of PCL‐b‐PVAc are able to crystallize. The purpose of this work was to analyse the influence of the method of copolymer synthesis on the crystallinity of the PCL blocks. The results indicate a significant decrease of the crystallinity of the PCL blocks in copolymers obtained using the coupling method, compared to PCL homopolymers, in contrast to copolymers obtained through the macroinitiator approach for which the crystallinity of PCL is much less affected. This influence of the synthesis method is explained by the presence, in the copolymers obtained using the click reaction, of a rigid triazol cycle binding the two blocks, limiting their mobility and decreasing the tendency of PCL to crystallize. © 2013 Society of Chemical Industry  相似文献   

8.
《Polymer Composites》2017,38(7):1454-1461
Well‐defined poly(N‐isopropylacrylamide) and poly(2‐(diethylamino) ethyl methacrylate) were synthesized first by a reversible addition‐fragmentation chain transfer process. These polymers were then reduced to generate an end thiol group to react with isocyanate groups on the surface of silica nanoparticles, which were pretreated with toluene‐2,4‐diisocyanate, by a one‐pot “click” reaction to prepare temperature and pH responsive polymer functionalized hybrid silica nanoparticles. The polymer functionalized silica hybrid nanoparticles were characterized by a range of techniques such as Fourier transform infrared spectroscopy and dynamic light scattering. The doubly responsive polymer functionalized silica hybrid nanoparticles show both temperature and pH responsive behavior and their solution properties were dependent on the ratio of the two polymers on the surface of silica. Covalent functionalization of the silica nanoparticle with well‐defined temperature and pH responsive polymers was accomplished via a one‐pot thiol‐isocyanate click reaction. This reaction was found to be extremely efficient in producing doubly responsive polymer functionalized silica hybrid nanoparticle, even at relatively low reaction temperature and short reaction time. Thermogravimetric analysis indicated that the same ratio of poly(N‐isopropylacrylamide) and poly(2‐(diethylamino)ethyl methacrylate) functionalized silica hybrid nanoparticle consisted of 42.46 wt% polymer. POLYM. COMPOS., 38:1454–1461, 2017. © 2015 Society of Plastics Engineers  相似文献   

9.
Polymeric nanoparticle micelles are formed from amphiphilic polymers with a hydrophobic core and a hydrophilic corona. Often comprised of a biodegradable, biocompatible polymer core and a poly(ethylene glycol) corona, these nanoparticle micelles encapsulate a hydrophobic drug and enable surface modification with targeting ligands. Strategies to enhance hydrophobic drug encapsulation are described as chemistries that facilitate covalent modification with antibodies using water-based click chemistry.  相似文献   

10.
BACKGROUND: The ‘A2 + B3’ type of polymerization has been demonstrated to be an alternative route towards hyperbranched polymers. Some highly crosslinked hyperbranched polymers have been prepared via copper(I)‐catalyzed click reactions of multivalent azides and alkynes. To obtain hyperbranched polymers without gelation and develop the A2 + B3 type of polymerization based on click reactions, the specific reaction conditions need to be investigated. RESULTS: In this work, a hyperbranched polytriazole (hb‐PTA) was synthesized through the A2 + B3 approach using a click reaction. 4‐N,N′‐bis(2‐azidoethyl)amino‐4′‐nitroazobenzene and 1,3,5‐tris(alynyloxy)benzene were synthesized for use as the A2 and B3 monomers, respectively. This was a ‘one‐pot’ polymerization carried out using a slow‐addition method. The obtained hb‐PTA was soluble in common organic solvents. The molecular structure was characterized using 1H NMR, Fourier transform infrared and gel permeation chromatography analyses. The degree of branching of hb‐PTA was determined to be around 0.50. CONCLUSION: The hb‐PTA was successfully synthesized via the A2 + B3 approach based on a click reaction. The polymerization conducted in dilute solution adopting slow addition of A2 to B3 resulted in hb‐PTA in the absence of gelation. The obtained hb‐PTA exhibited high thermal stability. Copyright © 2008 Society of Chemical Industry  相似文献   

11.
Graphene oxide (GO) was functionalized with hyperbranched polyurethane (HBPU) via click coupling between azide‐functionalized HBPU and alkynyl‐decorated GO. HBPU‐functionalized GO composites of various compositions were prepared. The azide‐containing HBPU was characterized using Fourier‐transform infrared (FT‐IR) spectroscopy and 1H‐nuclear magnetic resonance spectroscopy. The HBPU‐functionalized GO composites were characterized using transmission electron microscopy and FT‐IR spectroscopy. The functionalized GO showed excellent dispersion in the HBPU matrix, giving composites with enhanced mechanical and thermal properties. The material properties were effectively regulated by click‐coupled exfoliation of GO with HBPU, enabling the production of high‐performance materials. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44631.  相似文献   

12.
Fully degradable cationic poly(ester‐phosphoester)s with antibacterial properties were prepared by a combination of ring‐opening polymerization (ROP) and “click” reaction. First, poly(ester‐phosphoester)s‐bearing alkynyl groups were synthesized by the ring‐opening copolymerization of 2‐(2‐propynyloxy)?2‐oxo‐1,3,2‐dioxaphospholane (propynyl ethylene phosphate, PEP) and ε‐caprolactone (CL) using lanthanum tris(2,6‐di‐tert‐butyl‐4‐methylphenolate)s (La(DBMP)3) as the catalyst. 2‐Azido‐N,N‐dimethylethanamine (DMEAN3) was then attached to the copolymers by “click” reaction, resulting in poly(ester‐phosphoester)s with pendant tertiary amines. After the quaternization reactions between the copolymer and various alkyl bromides, cationic poly(ester‐phosphoester)s containing ammonium groups were obtained. Optical density (OD) measurement shows that the cationic copolymers have excellent antibacterial activity, which makes them potential candidates as biomaterials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42647.  相似文献   

13.
Novel side-chain pyrrole or thiophene functional polystyrenes (PS-Py and PS-Th) were synthesized by using ‘‘click chemistry’’ strategy. First, approximately 40% of chloro groups of poly(styrene-co-chloromethylstyrene) P(S-co-CMS), prepared by nitroxide mediated radical polymerization (NMRP), were converted to azido groups by using NaN3 in N,N-dimethylformamide. Propargyl pyrrole was prepared by etherification of 4-(1H-pyrrol-1-yl)phenol prepared by Clauson-Kaas reaction using propargylbromide. Propargyl thiophene was synthesized by heterogeneous esterification reaction between 3-thiophenecarboxylic acid and propargylbromide. Finally, azido-functionalized polystyrene was coupled to these propargyl functional heterocyclics with high efficiency by click chemistry. The intermediates at various stages and final polymers were characterized by spectral analysis and cyclic voltammetry.  相似文献   

14.
Novel amphiphilic ethyl cellulose (EC) brush polymers with mono and dual side chains of poly(2-(2-methoxyethoxy)ethyl methacrylate)-co-oligo(ethylene glycol) methacrylate) (P(MEO2MA-co-OEGMA)) and poly(2-(N,N-dimethylamino)ethyl methacrylate) (PDMAEMA) were synthesized by the combination of atom transfer radical polymerization (ATRP) and click chemistry. The molar ratio of P(MEO2MA-co-OEGMA) and PDMAEMA was varied through changing the feed ratio of these polymers and the coupling efficiency of click chemistry is relatively high. The brush polymers can self-assemble into spherical micelles/aggregates. The micelles/aggregates show the tunable temperature-pH responsive properties. The cloud points and the pH-triggered phase transition were influenced by EC chains and the ratio of P(MEO2MA-co-OEGMA) and PDMAEMA side chains. The brush polymers have the great potential applications as biomedical or intelligent materials.  相似文献   

15.
Pyrene end‐labeled star poly(?‐caprolactone)s (PCLs) with polyhedral oligomeric silsesquioxane (POSS) core were prepared by combination of copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) click chemistry and ring‐opening polymerization techniques. First, ?‐caprolactone (?‐CL) is polymerized by using 1‐pyrene methanol as initiator and stannous octoate as catalyst to obtain α‐pyrene‐ω‐hydroxyl telechelic PCL with different chain lengths. Then, its hydroxyl group is converted to acetylene functionality by esterification reaction with propargyl chloroformate. Finally, the CuAAC click reaction of α‐pyrene‐ω‐acetylene telechelic PCL with POSS‐(N3)8 leads to corresponding pyrene end‐labeled star‐shaped PCLs. The successful synthesis of pyrene end‐labeled star polymers is clearly confirmed by 1H‐nuclear magnetic resonance, Fourier transform infrared, gel permeation chromatograph, differential scanning calorimeter, and thermogravimetric analysis. Furthermore, non‐covalent interactions of obtained star polymers with fullerene are investigated in liquid media. Based on Raman spectroscopy and visual investigations, the star polymer having shorter chain length exhibited better and more stable dispersion with fullerene. The amount of pyrene units present per polymer chains can directly influence the dispersion stability of fullerene. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46520.  相似文献   

16.
The combination of radical‐promoted cationic polymerization, atom transfer radical polymerization (ATRP) and click chemistry was employed for the efficient preparation of poly(cyclohexene oxide)‐block‐polystyrene (PCHO‐b‐PSt). Alkyne end‐functionalized poly(cyclohexene oxide) (PCHO‐alkyne) was prepared by radical‐promoted cationic polymerization of cyclohexene oxide monomer in the presence of 1,2‐diphenyl‐2‐(2‐propynyloxy)‐1‐ethanone (B‐alkyne) and an onium salt, namely 1‐ethoxy‐2‐methylpyridinium hexafluorophosphate, as the initiating system. The B‐alkyne compound was synthesized using benzoin photoinitiator and propargyl bromide. Well‐defined bromine‐terminated polystyrene (PSt‐Br) was prepared by ATRP using 2‐oxo‐1,2‐diphenylethyl‐2‐bromopropanoate as initiator. Subsequently, the bromine chain end of PSt‐Br was converted to an azide group to obtain PSt‐N3 by a simple nucleophilic substitution reaction. Then the coupling reaction between the azide end group in PSt‐N3 and PCHO‐alkyne was performed with Cu(I) catalysis in order to obtain the PCHO‐b‐PSt block copolymer. The structures of all polymers were determined. Copyright © 2010 Society of Chemical Industry  相似文献   

17.
Reduction‐responsive drug delivery systems have recently gained intense attention in intracellular delivery of anticancer drugs. In this study, we developed a PEGylated polypeptide, poly(ethylene glycol)‐block‐poly(?‐propargyloxycarbonyl‐l ‐lysine) (PEG113b‐PPAL), as a novel clickable substrate for conjugation of reduction‐responsive side chains for antineoplastic drug delivery. PEG113b‐PPAL was synthesized through ring‐opening polymerization of alkyne‐containing N‐carboxyanhydride monomers. A designed disulfide‐containing side chain was introduced onto the PEGylated polypeptide by click reaction. The obtained copolymer PEG113b‐P(Lys‐DSA) formed micelles by self‐assembly, which exhibited reduction‐responsive behavior under the stimulus of 10 mmol L–1 glutathione (GSH) in water. A small molecule intermediate, compound 2 , was used as a model to investigate the thiol reduction mechanism of PEG113b‐P(Lys‐DSA) copolymers. The anticancer drug doxorubicin (DOX) was then loaded into the micelles with a drug loading content of 6.73 wt% and a loading efficiency of 40.3%. Both the blank and the drug‐loaded micelles (DOX‐loaded polylysine derived polymeric micelles (LMs/DOX)) adopted a spherical morphology, with average diameters of 48.0 ± 13.1 and 63.8 ± 20.0 nm, respectively. The in vitro drug release results indicated that DOX could be released faster from the micelles by the trigger of GSH in phosphate buffered saline. Confocal laser scanning microscopy and flow cytometer analysis further proved the intracellular delivery of DOX by LMs/DOX and their GSH‐sensitive release behavior. A 3‐(4,5‐dimethyl‐thiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide assay showed that the polymers exhibited negligible cytotoxicity towards normal L929 cells or cancer MCF‐7 cells with a treated concentration up to 1.0 mg mL–1. In conclusion, our synthesized biocompatible and biodegradable PEGylated polypeptides hold great promise for intracellular antineoplastic drug delivery. © 2019 Society of Chemical Industry  相似文献   

18.
Poly(ethylene glycol) (PEG) is an important water‐soluble polymer, which is widely used in the biomedical field because of its good biodegradability, biocompatibility and permeability. It is usually synthesized by anionic polymerization of ethylene oxide but side reactions lead to the formation of some oligomers. High molecular weight PEG can be obtained, however, through coordinated anionic polymerization. Recently a novel controlled anionic polymerization based on the initiating system ammonium bromide/trialkylaluminium was reported. Related studies have shown that the controlled anionic polymerization allows the synthesis of linear polyethers with low dispersity in a wide range of molecular weights at ambient temperature. Unfortunately, so far this controlled anionic polymerization has not been used to synthesize polymers with complex architectures. In the work reported here, controlled anionic polymerization was combined with ‘click’ chemistry for the first time to synthesize polyethers with multiple arms. Firstly, controlled anionic polymerization was employed to synthesize a linear bromine‐terminated PEG (PEG‐Br) using ethylene oxide as the monomer and tetraoctylammonium bromide/triisobutylaluminium as the initiating system at room temperature. The terminal bromine in the PEG thus synthesized was then converted into an azide group by the reaction of PEG‐Br and sodium azide. A trifunctional linking agent was also prepared by the reaction of trimethylolpropane and propiolic acid. By using ‘click’ chemistry, a three‐arm PEG was finally obtained through the reaction of the azide‐terminated PEG and the trifunctional linking agent. The chemical structure of the polymer thus synthesized was characterized using infrared spectroscopy, NMR spectroscopy, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry and size‐exclusion chromatography with multi‐angle laser light scattering. It was found that the synthesized polyether possesses the designed structure. Considering the wide applicability of controlled anionic polymerization and ‘click’ chemistry, their combination is a valuable way to synthesize various polyethers with multiple arms. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
We report on the synthesis and self‐assembly in water of well‐defined amphiphilic star‐block copolymers with a linear crystalline polyethylene (PE) segment and two or three poly(ethylene glycol) (PEG) segments as the building blocks. Initially, alkynyl‐terminated PE (PE‐?) is synthesized via esterification of pentynoic acid with hydroxyl‐terminated PE, which is prepared using chain shuttling ethylene polymerization with 2,6‐bis[1‐(2,6‐dimethylphenyl) imino ethyl] pyridine iron (II) dichloride/methylaluminoxane/diethyl zinc and subsequent in situ oxidation with oxygen. Then diazido‐ and triazido‐terminated PE (PE‐(N3)2 and PE‐(N3)3) are obtained by the click reactions between PE‐? and coupling agents containing triazido or tetraazido, respectively. Finally, the three‐arm and four‐arm star‐block copolymers, PE‐b‐(PEG)2 and PE‐b‐(PEG)3, are prepared by click reactions between PE‐(N3)2 or PE‐(N3)3 and alkynyl‐terminated PEG. The self‐assembly of the resultant amphiphilic star‐block copolymers in water was investigated by dynamic light scattering, transmission electron microscopy, and atomic force microscopy. It is found that, in water, a solvent selectively good for PEG blocks; these star‐block copolymer chains could self‐assemble to form platelet‐like micelles with insoluble PE blocks as crystalline core and soluble PEG blocks as shell. The confined crystallization of PE blocks in self‐assembled structure formed in aqueous solution is investigated by differential scanning calorimetry. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
In this study, a dendrimer-like polymer based on poly(ethylene oxide) (PEO) was synthesized through a combination of anionic ring-opening polymerization (AROP) and click reaction via arm-first method. Firstly, the polymeric arm, a linear PEO with one alkynyl group and two bromo groups, was synthesized by AROP of ethylene oxide followed by functionalization with propargyl bromide and esterified with 2-bromopropionic bromide. Second, a star PEO carrying three azide groups was synthesized though AROP of ethylene oxide used 1,1,1-tris(hydrosymethyl) ethane as initiator followed esterificated with 2-bromopropionic acid and azidation. By azide–alkyne click reactions between the azide-terminated PEO star polymer and linear PEO with functionalization alkynyl group, a three generation dendrimer-like PEO, G3-PEO-24Br, was successfully synthesized. The resulting polymers were observed to have precisely controlled molecular weights and compositions with narrow molecular weight distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号