首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐co‐HFP) hollow fiber membranes were prepared by using the phase inversion method. The effect of polyethylene glycol (PEG‐600Mw) with different concentrations (i.e., 0, 5, 7, 10, 12, 15, 18, and 20 wt %) as a pore former on the preparation and characterization of PVDF‐co‐HFP hollow fibers was investigated. The hollow fiber membranes were characterized using scanning electron microscopy, atomic force microscopy, and porosity measurement. It was found that there is no significant effect of the PEG concentration on the dimensions of the hollow fibers, whereas the porosity of the hollow fibers increases with increase of PEG concentration. The cross‐sectional structure changed from a sponge‐like structure of the hollow fiber prepared from pure PVDF‐co‐HFP to a finger‐like structure with small sponge‐like layer in the middle of the cross section with increase of PEG concentration. A remarkable undescribed shape of the nodules with different sizes in the outer surfaces, which are denoted as “twisted rope nodules,” was observed. The mean surface roughness of the hollow fiber membranes decreased with an increase of PEG concentration in the polymer solution. The mean pore size of the hollow fibers gradually increased from 99.12 to 368.91 nm with increase of PEG concentration in polymer solution. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
In this work, biocompatible hydrogel matrices for wound‐dressing materials and controlled drug‐release systems were prepared from poly[hydroxyethyl methacrylate‐co‐poly(ethylene glycol)–methacrylate] [p(HEMA‐co‐PEG–MA] films via UV‐initiated photopolymerization. The characterization of the hydrogels was conducted with swelling experiments, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis (differential scanning calorimetry), and contact‐angle studies. The water absorbency of the hydrogel films significantly changed with the change of the medium pH from 4.0 to 7.4. The thermal stability of the copolymer was lowered by an increase in the ratio of poly(ethylene glycol) (PEG) to methacrylate (MA) in the film structure. Contact‐angle measurements on the surface of the p(HEMA‐co‐PEG–MA) films demonstrated that the copolymer gave rise to a significant hydrophilic surface in comparison with the homopolymer of 2‐hydroxyethyl methacrylate (HEMA). The blood protein adsorption was significantly reduced on the surface of the copolymer hydrogels in comparison with the control homopolymer of HEMA. Model antibiotic (i.e., minocycline) release experiments were performed in physiological buffer saline solutions with a continuous flow release system. The amount of minocycline release was shown to be dependent on the HEMA/PEG–MA ratio. The hydrogels have good antifouling properties and therefore are suitable candidates for wound dressing and other tissue engineering applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
The synthesis of two low molecular weight linear unsaturated oligoester precursors, poly(propylene fumarate‐co‐sebacate) (PPFS) and poly(ethylene fumarate‐co‐sebacate) (PEFS), are described. PPFS, PEFS, and poly(ethylene glycol) are then used to prepare poly(propylene fumarate‐co‐sebacate)‐co‐poly(ethylene glycol) (PPFS‐co‐PEG) and poly(ethylene fumarate‐co‐sebacate)‐co‐poly(ethylene glycol) (PEFS‐co‐PEG) block copolymers. The products thus obtained are investigated in terms of the molecular weight, composition, structure, thermal properties, and solubility behavior. A number of design parameters including the molecular weights of PPFS, PEFS, and PEG, the reaction time in the polymer synthesis, and the weight ratio of PEG to PPFS or to PEFS are varied to assess their effects on the product yield and properties. The hydrolytic degradation of PPFS‐co‐PEG and PEFS‐co‐PEG in an isotonic buffer (pH 7.4, 37°C) is investigated, and it is found that the fumarate ester bond cleaves faster than does the sebacate ester bond. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 295–300, 2004  相似文献   

4.
Narrowdisperse poly(divinylbenzene‐coN‐isopropylacrylamide) (poly(DVB‐co‐NIPAM)) functional microspheres with the diameter in the range of 630 nm and 2.58 μm were prepared by distillation–precipitation polymerization in neat acetonitrile in the absence of any stabilizer. The effect of N‐isopropylacrylamide (NIPAM) ratio in the comonomer feed on the morphology of the resultant polymer particles was investigated in detail with divinylbenzene (DVB) as crosslinker and 2,2′‐azobisisobutyronitrile (AIBN) as initiator. The monodisperse poly(DVB‐co‐NIPAM) microspheres with NIPAM fraction of 20 wt % were selected for the preparation of raspberry‐like core‐corona polymer composite by the hydrogen‐bonding self‐assembly heterocoagulation with poly(ethyleneglycol dimethacrylate‐co‐acrylic acid) [poly(EGDMA‐co‐AA)] nanospheres. Both of the functional poly(DVB‐co‐NIPAM) microspheres and the core‐corona particles were characterized with scanning electron microscopy (SEM), Fourier transform infrared spectra (FTIR), and elemental analysis (EA). © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1350–1357, 2007  相似文献   

5.
BACKGROUND: Polyacrylate/silica nanocomposite latexes have been fabricated using blending methods with silica nanopowder, in situ polymerization with surface‐functionalized silica nanoparticles or sol–gel processes with silica precursors. But these approaches have the disadvantages of limited silica load, poor emulsion stability or poor film‐forming ability. RESULTS: In this work, poly[styrene‐co‐(butyl acrylate)‐co‐(acrylic acid)] [P(St‐BA‐AA)]/silica nanocomposite latexes and their dried films were prepared by adding an acidic silica sol to the emulsion polymerization stage. Morphological and rheological characterization shows that the silica nanoparticles are not encapsulated within polymer latex particles, but interact partially with polymer latex particles via hydrogen bonds between the silanol groups and the ? COOH groups at the surface of the polymer particles. The dried nanocomposite films have a better UV‐blocking ability than the pure polymer film, and retain their transparency even with a silica content up to 9.1 wt%. More interestingly, the hardness of the nanocomposite films increases markedly with increasing silica content, and the toughness of the films is not reduced at silica contents up to 33.3 wt%. An unexpected improvement of the solvent resistance of the nanocomposite films is also observed. CONCLUSION: Highly stable P(St‐BA‐AA)/silica nanocomposite latexes can be prepared with a wide range of silica content using an acidic silica sol. The dried nanocomposite films of these latexes exhibit simultaneous improvement of hardness and toughness even at high silica load, and enhanced solvent resistance, presumably resulting from hydrogen bond interactions between polymer chains and silica particles as well as silica aggregate/particle networks. Copyright © 2009 Society of Chemical Industry  相似文献   

6.
pH and thermo‐responsive graft copolymers are reported where thermo‐responsive poly(N‐isopropylacrylamide) [poly(NIPAAm), poly A ], poly(N‐isopropylacrylamide‐co‐2‐(diethylamino) ethyl methacrylate) [poly(NIPAAm‐co‐DEA), poly B ], and poly(N‐isopropylacrylamide‐co‐methacrylic acid) [poly(NIPAAm‐co‐MAA), poly C ] have been installed to benzaldehyde grafted polyethylene glycol (PEG) back bone following introducing a pH responsive benzoic‐imine bond. All the prepared graft copolymers for PEG‐g‐poly(NIPAAm) [ P‐N1 ], PEG‐g‐poly(NIPAAm‐co‐DEA) [ P‐N2 ], and PEG‐g‐poly(NIPAAm‐co‐MAA) [ P‐N3 ] were characterized by 1H‐NMR to assure the successful synthesis of the expected polymers. Molecular weight of all synthesized polymers was evaluated following gel permeation chromatography. The lower critical solution temperature of graft copolymers varied significantly when grafted to benzaldehyde containing PEG and after further functionalization of copolymer based poly(NIPAAm). The contact angle experiment showed the changes in hydrophilic/hydrophobic behavior when the polymers were exposed to different pH and temperature. Particle size measurement investigation by dynamic light scattering was performed to rectify thermo and pH responsiveness of all prepared polymers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
The radical‐initiated terpolymerization of 3,4‐dihydro‐2H‐pyran (DHP), maleic anhydride (MA), and vinyl acetate (VA), which were used as a donor–acceptor–donor system, was carried out in methyl ethyl ketone in the presence of 2,2′‐azobisisobutyronitrile as an initiator at 65°C in a nitrogen atmosphere. The synthesis and characterization of binary and ternary copolymers, some kinetic parameters of terpolymerization, the terpolymer‐composition/thermal‐behavior relationship, and the antitumor activity of the synthesized polymers were examined. The polymerization of the DHP–MA–VA monomer system predominantly proceeded by the alternating terpolymerization mechanism. The in vitro cytotoxicities of poly(3,4‐dihydro‐2H‐pyran‐alt‐maleic anhydride) [poly(DHP‐alt‐MA)] and poly(3,4‐dihydro‐2H‐pyran‐co‐maleic anhydride‐co‐vinyl acetate) [poly(DHP‐co‐MA‐co‐VA)] were evaluated with Raji cells (human Burkitt lymphoma cell line). The antitumor activity of the prepared anion‐active poly(DHP‐alt‐MA) and poly(DHP‐co‐MA‐co‐VA) polymers were studied with methyl–thiazol–tetrazolium testing, and the 50% cytotoxic dose was calculated. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2352–2359, 2005  相似文献   

8.
Amino containing polymer of poly[styrene‐co‐N‐(4‐vinylbenzyl)‐N,N‐diethylamine] (PS‐co‐PVEA) was successfully grafted onto the surface of silica microspheres via the seed dispersion polymerization of styrene and N‐(4‐vinylbenzyl)‐N,N‐diethylamine in the presence of divinylbenzene employing the 3‐(methacryloxy)propyltrimethoxysilane activated silica microspheres as the seed. The polymerization led to thin chelating polymer films (30 nm) coated silica microspheres (silica@polymer) as determined by transmission electron microscopy. The synthesized silica@polymer composites were used as sorbents for lead ions (Pb2+). The adsorption properties, such as the pH effect, the adsorption kinetic, adsorption isotherm as well as the reuse of the silica@polymer sorbent were evaluated. The results demonstrated that the optimized adsorption condition was under neutral and the silica@polymer sorbent was efficient since it showed higher adsorption amounts (8.0 mg/g) and shorter adsorption equilibrium time (8 h) than that of the PS‐co‐PVEA microspheres and the pristine silica microspheres. Moreover, the silica@polymer sorbent was reusable even after four cycles of adsorption. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 39973.  相似文献   

9.
A pH‐ and temperature‐responsive semi‐interpenetrating copolymer PEG6000/poly(NIPA‐co‐AMPS) (PEG/AMPS‐co‐NIPA SIPN), for short PEG SIPN, was made by ammonium persulfate‐initiated suspension copolymerization of N‐isopropylacrylamide, 2‐acrylamido‐2‐methylpropanesulphonic acid, and N,N′‐methylene‐bis‐acrylamide (MBAA; crosslinker) in the presence of PEG6000. The PEG SIPN copolymer matrices containing nanostructures made in the high‐temperature copolymerization resulted in channels for PEG and facile migration of drugs. In drug encapsulation or drug‐loading process, one can easily ignore or pay less attention to the interaction between a drug and its encapsulation materials; however, the ignored interactions may induce problems in drug properties or the release behavior in use. Sodium diclofenac (DFNa) precipitates as the carboxylic acid form in an acidic environment, and it is challenging to encapsulate sodium diclofenac in such an acidic matrix without precipitation of the sparingly soluble acid form of DFNa on the surface of the polymer substrate. To avoid bulky precipitation in drug loading, an in situ loading technique was developed for producing gel spheres with DFNa uniformly distributed in the polymer matrix. The technique is based on fast polymerization of spherical droplets of a pregel solution in which the drug is dissolved. Diffusion‐loading prodrugs were made in comparison with in situ loading prodrugs in thermal, release kinetics, and release behavior. Drug release profiles (in pH 7.4 phosphate buffer) show that the new drug loading technique gives controlled release during a period of about 7 days at 37°C. By contrast, gel spheres loaded with sodium diclofenac using the conventional diffusion technique produced almost total release of the drug within about 24 h. The thermal stability of sodium diclofenac, the PEG/AMPS‐co‐NIPA SIPN, and the prodrugs made with the SIPN and sodium diclofenac was studied. A near zero‐order release kinetics was found in the in vitro release of sodium diclofenac with in situ loading PEG SIPN prodrug. We have, for the first time, studied sodium diclofenac release behavior from the PEG SIPN hydrogel systems. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
Poly(vinyl chloride‐co‐vinyl acetate‐co‐maleic anhydride) (PVVM)/silica nanocomposites were prepared by the suspension radical copolymerization of the monomers in the presence of fumed silica premodified with γ‐methylacryloxypropl trimethoxy siliane. Morphological observation showed that the silica particles of nanometer scale were well dispersed in the copolymer matrix of the nanocomposites films, whereas silica particles tended to agglomerate in the composites films prepared by the solution blending of PVVM with silica. The experimental results show that the thermal stability, glass‐transition temperature, tensile strength, and Young's modulus were significantly enhanced by the incorporation of silica nanoparticles. The enhancement of properties was related to the better dispersion of silica particles in polymer matrix and the interaction between the polymer chains and the surfaces of the silica particles. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
[2,6‐Bis(4‐hydroxybenzylidene)cyclohexanone] (HBC) was prepared by reacting cyclohexanone and p‐hydroxybenzaldehyde in the presence of acid catalyst. Acrylated derivative of HBC, 4‐{[‐3‐(4‐hydroxybenzylidene)‐2‐oxocyclohexylidene]methyl}phenyl acrylate (HBA), was prepared by reacting HBC with acryloyl chloride in the presence of triethylamine. Copolymers of HBA with styrene (S) and methyl acrylate (MA) of different feed compositions were carried out by solution polymerization technique by using benzoyl peroxide (BPO) under nitrogen atmosphere. All monomers and polymers were characterized by using IR and NMR techniques. Reactivity ratios of the monomers present in the polymer chain were evolved by using Finnman–Ross (FR), Kelen–Tudos (KT), and extended Kelen–Tudos (ex‐KT) methods. Average values of reactivity were achieved by the following three methods: r1 (S) = 2.36 ± 0.45 and r2 (HBA) = 0.8 ± 0.31 for poly(S‐co‐HBA); r1 = 1.62 ± 0.06 (MA); and r2 = 0.12 ± 0.07 (HBA) for poly(MA‐co‐HBA). The photocrosslinking property of the polymers was done by using UV absorption spectroscopic technique. The rate of photocrosslinking was enhanced compared to that of the homopolymers, when the HBA was copolymerized with S and MA. Thermal stability and molecular weights (Mw and Mn) were determined for the polymer samples. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2494–2503, 2004  相似文献   

12.
Differential scanning calorimetry (DSC) of triple blends of high molecular weight poly(N‐vinyl pyrrolidone) (PVP) with oligomeric poly(ethylene glycol) (PEG) of molecular weight 400 g/mol and copolymer of methacrylic acid with ethylacrylate (PMAA‐co‐EA) demonstrates partial miscibility of polymer components, which is due to formation of interpolymer hydrogen bonds (reversible crosslinking). Because both PVP and PMAA‐co‐EA are amorphous polymers and PEG exhibits crystalline phase, the DSC examination is informative on the phase state of PEG in the triple blends and reveals a strong competition between PEG and PMAA‐co‐EA for interaction with PVP. The hydrogen bonding in the triple PVP–PEG–PMAA‐co‐EA blends has been established with FTIR Spectroscopy. To evaluate the relative strengths of hydrogen bonded complexes in PVP–PEG–PMAA‐co‐EA blends, quantum‐chemical calculations were performed. According to this analysis, the energy of H‐bonding has been found to diminish in the order: PVP–PMAA‐co‐EA–PEG(OH) > PVP–(OH)PEG(OH)–PVP > PVP–H2O > PVP–PEG(OH) > PMAA‐co‐EA–PEG(? O? ) > PVP–PMAA‐co‐EA > PMAA‐co‐EA–PEG(OH). Thus, most stable complexes are the triple PVP–PMAA‐co‐EA–PEG(OH) complex and the complex wherein comparatively short PEG chains form simultaneously two hydrogen bonds to PVP carbonyl groups through both terminal OH‐groups, acting as H‐bonding crosslinks between longer PVP backbones. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

13.
Monodispersed crosslinked cationic poly(4‐vinylpyridine‐co‐butyl acrylate) [P(4VP‐BA)] seed latexes were prepared by soapless emulsion polymerization, using 2,2′‐azobismethyl(propionamidine)dihydrochloride (V50) as an initiator and divinylbenzene (DVB) or ethylene glycol dimethacrylate (EGDMA) as a crosslinker. The optimum condition to obtain monodispersed stable latex was investigated. It was found that the colloidal stability of the P4VP latex can be improved by adding an adequate amount of BA (BA/4VP = 1/4, w/w), and adopting a semicontinuous monomer feed mode. Subsequently, poly(4‐vinylpyridine‐co‐butyl acrylate)/Poly(styrene‐co‐butyl acrylate) [P(4VP‐BA)/P(ST‐BA)] composite microspheres were synthesized by seeded polymerization, using the above latex as a seed and a mixture of ST and BA as the second‐stage monomers. The effects of the type of crosslinker, the degree of crosslinking, and the initiators (AIBN and V50) on the morphology of final composite particles are discussed in detail. It was found that P(4VP‐BA)/P(ST‐BA) composite microspheres were always surrounded by a PST‐rich shell when V50 was used as initiator, while sandwich‐like or popcorn‐like composite particles were produced when AIBN was employed. This is because the polarity of the polymer chains with AIBN fragments is lower than for the polymer with V50 fragments, hence leading to higher interfacial tension between the second‐stage PST‐rich polymer and the aqueous phase, and between PST‐rich polymer and P4VP‐rich seed polymer. As a result, the seed cannot be engulfed by the PST‐rich polymer. Furthermore, the decrease of Tg of the second‐stage polymer promoted phase separation between the seeds and the PST‐rich polymer: sandwich‐like particles formed more preferably than popcorn‐like particles. It is important knowledge that various morphologies different from PST‐rich core/P4VP‐rich shell morphology, can be obtained only by changing the initiator, considering P4VP is much more hydrophilic than PST. The zeta potential of composite particles initiated by AIBN in seeded polymerization shifted from a positive to a negative charge. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1190–1203, 2002  相似文献   

14.
Waxberry‐like poly(acrylonitrile‐co‐vinyl acetate)/Ag composite microspheres have been prepared simply and directly via a one‐step self‐assembly approach. The morphology, formation, and catalytic activity of the as‐prepared composite microspheres are further investigated. The difference in the solubility among different segments of poly(acrylonitrile‐co‐vinyl acetate) is the basis of the formation of poly(acrylonitrile‐co‐vinyl acetate) microspheres, while the ? CN groups on the surface of poly(acrylonitrile‐co‐vinyl acetate) microspheres play an important role in the growth process from poly(acrylonitrile‐co‐vinyl acetate) microsphere to poly(acrylonitrile‐co‐vinyl acetate)/Ag composite microsphere. It is found that bulk quantities of composite microspheres with high density of Ag nanoparticles on the surface can be obtained readily by controlling the concentration of AgNO3. The as‐prepared composite microsphere exhibits excellent catalytic activity on reduction of p‐nitrophenol. This study may shed some light on the self‐assembly of other metal/polymer composite microspheres. POLYM. ENG. SCI., 50:1767–1772, 2010. © 2010 Society of Plastics Engineers  相似文献   

15.
In this paper, the influences of composition of copolymers and acidity of electrolyte in an electrochemical reactor on morphological structure of copper‐in‐polymer gradient composite film were investigated. For binary copolymers, poly(acrylonitrile‐co‐methyl acrylate) [P(AN‐co‐MA)] and poly(acrylonitrile‐co‐sodium allyl sulfonate) [P(AN‐co‐SAS)], the charged group ? SO in P(AN‐co‐SAS) improves the swelling of the copolymer phase and copper reduction to form gradient morphology; the carboxylic ester group in P(AN‐co‐MA) is not effective because of its poor hydrophilicity, but it is a cooperating component with P(AN‐co‐SAS) to avoid excess of counterion (i.e., Na+) in SCF, which might severely interrupt Cu2+ coexistence. The swelling of the polymer phase is helpful to decrease the energy of the transfer ions in SCF and to enhance copper deposition and gradient formation. The increase of surface energy because of cluster growth raises the surface energy level of deposited Cu0 clusters. The conteraction between these two energy factors allows the size of clusters to be 50–100 nm. The appropriate H+ concentration improves active Cu2+ reduction and thus deposited gradient copper phase in the copolymer matrix. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 373–380, 2004  相似文献   

16.
A facile synthetic pathway to a multi‐arm star graft polymer has been developed via a grafting‐onto strategy using a combination of a reversible addition–fragmentation chain transfer (RAFT) arm‐first technique and aldehyde–aminooxy click reaction. A star backbone bearing aldehyde groups was prepared by the RAFT copolymerization of acrolein (Ac), an existing commercial aldehyde‐bearing monomer, with styrene (St), followed by crosslinking of the resultant poly(St‐co‐Ac) macro‐RAFT agent using divinylbenzene. The aldehyde groups on the star backbone were then used as clickable sites to attach poly(ethylene glycol) (PEG) side chains via the click reaction between the aldehyde groups and aminooxy‐terminated PEG, leading to a structurally well‐defined star graft copolymer with arms consisting of poly(St‐co‐Ac) as backbone and PEG as side chains. Crystalline morphology and self‐assembly in water of the obtained star graft copolymer were also investigated. Opportunities are open for the star graft copolymer to form either multimolecular micelles or unimolecular micelles via control of the number of grafted PEG side chains. © 2013 Society of Chemical Industry  相似文献   

17.
Porous poly(methacrylic acid‐co‐triethylene glycol dimethacrylate) (poly MAA‐co‐3G) particles in the size range of 10–40 μm were prepared via seed emulsion polymerization. Mixtures of linear polymer, solvent, and/or nonsolvent were used as inert diluents. The prepared porous polymer was converted using hydroxylamine hydrochloride and sodium methoxide into the corresponding poly(hydroxamic acid). The surface area of the porous copolymer particles was determined colorimetrically. The effect of the diluent type and concentration on the surface area of the prepared porous polymer was examined. The metal ion absorption capacity of the resin toward the different metal ions was examined using an atomic absorption spectrophotometer. The thermal stability of the polymers was examined by thermal gravimetric analysis. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1209–1215, 2000  相似文献   

18.
The monodisperse poly(styrene‐coN‐isopropylacrylamide) (poly(St‐co‐NIPAAm)) particles prepared by emulsifier‐free emulsion polymerization with microwave irradiation were induced by capillary forces to self‐assemble, and formed the two‐dimensional films on the clean glassware wafer substrates. The morphologies of the two‐dimensional films were characterized by scanning electron microscopy (SEM) and atom force microscopy (AFM). The results showed that monodisperse poly(St‐co‐NIPAAm) particles could form ordered two‐dimensional films by capillary forces. With NIPAAm concentration increasing, there gradually appeared surface undulations or surface defective region on the two‐dimensional films. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3514–3519, 2006  相似文献   

19.
Poly(vinylidene chloride‐co‐vinyl chloride) (P(VDC‐co‐VC) membranes were prepared by non‐solvent‐induced phase separation and adjusted by adding water‐soluble polyethylene glycol (PEG) and water‐insoluble silicon dioxide (SiO2) hydrophilic nanoparticles. The structure of pores and antifouling performance were investigated to illustrate the effect of these nanoparticles. The cross section of the P(VDC‐co‐VC) membrane exhibited more macropores and the typical finger‐like pores turned into more vertically interconnected ones with increasing PEG content, while the number and size of finger‐like pores became less with increasing SiO2 content. Considering the filtration and antifouling experiments, the presence of hydrophilic PEG and SiO2 nanoparticles in the P(VDC‐co‐VC) polymer matrix improved the membrane performance in terms of high flux, high BSA rejection ratio, and fouling resistance.  相似文献   

20.
In this work, the effect of blend composition and previous photodegradation on the biodegradation of polypropylene/poly(3‐hydroxybutyrate) (PP/PHB) blends was studied. The individual polymers and blends with or without the addition of poly(ethylene‐co‐methyl acrylate‐co‐glycidyl methacrylate) [P(E‐MA‐GMA)] as a compatibilizer (in the case of 80/20 blend) were exposed to UV light for 4 weeks and their biodegradation was evaluated. The biodegradation of PHB phase within the blends was hindered as PHB was the dispersed phase and PP fibrous particles were observed at the surface of the blend samples after biodegradation. Previous photodegradation lessened PHB biodegradation but enhanced the biodegradation of PP and the blends within the biodegradation time studied. Photodegradation resulted in cracks at the surface of PP and the blends, which probably facilitated the biotic reactions due to an easier access of the enzymes to deeper polymer layers. It also resulted in a decrease of molecular weight of PP phase and formation of carbonyl and hydroxyl groups which were consumed during biodegradation. Size exclusion chromatography analysis revealed that only the short chains of PP were consumed during biodegradation. POLYM. ENG. SCI., 53:2109–2122, 2013. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号