首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel methylphenyl silicone resin, with M, D, and T units, was synthesized by cohydrolysis and cocondensation method from dimethyldimethoxysilane (Me2Si(OMe)2), phenyltrimethoxysilane (PhSi(OMe)3), hexamethyldisiloxane, and 1,3‐divinyl‐1,1,3,3‐tetramethyldisiloxane in toluene/water mixture catalyzed by hydrochloric acid and trifluoromethanesulfonic acid. The vinyl end‐capped MDT silicone resins were chosen for reinforcement filler to enhance the mechanical properties of silicone‐based ablative composites. The effects of resins with various R/Si ratios, vinyl content, and loadings on mechanical properties of PMPS rubbers were investigated. It was revealed that on the premise of good fluidity and processing performance, MDT resin showed excellent reinforcing effect and thermal stability compared with silica. MDT reinforced ablative composite showed satisfactory mechanical and antiablative properties. The linear ablation rate was 0.01 mm/s, which maybe associated with high yield of charred residue in thermogravimetric analysis results. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41571.  相似文献   

2.
A novel thermal stability and highly transparent silicone resin‐type material was prepared via hydrosilylation of vinyl‐polyhedral oligomeric silsesquioxanes (POSS)‐grafted methylhydrosilicone oil and vinylmethylsilicone oil in the presence of Karstedt catalyst. The morphology, mechanical property, thermal stability, optical transmittance, thermal‐oxidation resistance of the vinyl‐POSS‐reinforced silicone resins were systematically investigated. Scanning electron microscopy showed that the vinyl‐POSS‐reinforced silicone resins had good compatibility with polydimethylsiloxane (PDMS) systems. The mechanical analysis and thermo gravimetric analysis indicated that the mechanical properties and thermal stability increased with increasing quantity of vinyl‐POSS. However, the optical transmittance increased with the increasing amount of vinyl‐POSS rather than decreased. In addition, the incorporation of vinyl‐POSS did not improve the thermal resistance of the PDMS polymers. The product has the potential application for LED packaging. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42187.  相似文献   

3.
Summary: Glass fabric reinforced hybrid matrix composites of a toughened silicone resin and a vinyl ester resin were fabricated and their properties investigated. The hybrid composites consisted of multi‐layers of fiber reinforced silicone resins and vinyl ester resins. The toughened silicone resin, a crosslinkable phenylsilsesquioxane resin with high thermal and thermal oxidation resistance but relatively low Tg, was chosen to be the outer layers. The vinyl ester resin, with better strength, toughness and a much higher Tg than the toughened silicone resin, was used as the inner layers. A co‐cure process proved to establish a strong interface between the two in a hybrid composite. The hybrid composites had better flammability properties and much lower short term moisture absorption than the vinyl ester composites. The strength and modulus retention of the hybrid composites at elevated temperatures was higher than the composites using any single resin as the matrix. For example, when tested at 150 °C the flexural modulus and strength values of a twelve layer composite, with eight inner vinyl ester resin layers and four silicone outer layers, were almost an order of magnitude higher than the composite using the silicone resin alone, and were significantly higher than the one using vinyl ester resin alone. The room temperature short beam shear strength of the hybrid composites was also higher. DMA revealed that the inter‐diffusion of reactive components between the two resins was probably responsible for this synergistic effect, resulting in an α transition temperature of 182 °C for the hybrid composite, higher than that of either the silicone resin (85 °C) or the vinyl ester resin (162 °C).

  相似文献   


4.
Silicone–epoxy resins were synthesized through hydrosilylation of 1,2‐epoxy‐4‐vinyl‐cyclohexane with 1,3,5,7‐tetramethycyclotetrasiloxane. The silicone–epoxy resins showed high reactivity in the presence of aluminum complex/silanol compound catalysts. Curing of the resins was effected at extremely low concentrations of the aluminum acetylacetonate/Ph2Si(OH)2 catalyst to give hard materials with optical clarity. For the silicone–epoxy resins containing Si? H bonds, Al(acac)3 alone is effective for the curing. The cured silicone–epoxy resins showed excellent UV resistance. An improvement in the lifetime of UV‐LEDs was achieved using the silicone–epoxy compositions as encapsulant. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3954–3959, 2007  相似文献   

5.
A new addition curable silicone resin (ASiR) system with excellent dielectric and thermal properties was developed, which consists of only two components: poly(methylphenylvinylsiloxane) (PMPVSi) and an end‐capped hydrogen‐functionalized hyperbranched polysiloxane (EHFHPSi). PMPVSi is synthesized by a green and controllable process; EHFHPSi is first synthesized via A2 + B3 approach, and then end‐capped by hexamethyldisiloxane (HMDS). Three formulations were designed to investigate the optimum stoichiometry. Results show that cured ASiR resins have greatly different dielectric and thermal properties because of the different chemical structure of cured networks resulting from the different stoichiometries. The resin with a suitable stoichiometry has not only excellent dielectric properties including extremely low dielectric constant (2.96 at 1 Hz) and loss (0.0003 at 1 Hz) as well as good stability on frequency, but also outstanding thermal resistance, exhibiting great potential to be used as a new kind of high‐performance resins for many cutting‐edge industries, especially the microelectronic and insulation fields. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

6.
Optically clear silicone/epoxy hybrid resins were synthesized. The silicone resin (SiR) carrying Si? H, Si? CH?CH2 and Si? OH groups was prepared by hydrolytic condensation. The blends of SiR and diglycidyl ether of hydrogenated bisphenol A (DGEHBA) were cured through platinum‐catalyzed hydrosilylation and aluminium acetylacetonate‐catalyzed polymerization. The curing process was studied using differential scanning calorimetry and rigid‐body pendulum rheometry. It was found that the ratio of SiR to DGEHBA plays a major role in the curing process. The Si? OH groups of SiR assist polymerization of DGEHBA, and react with the epoxy resin to prevent phase separation. The cured hybrid resins are single‐phase materials with a transmittance of about 87% at 400 nm for a thickness of 3 mm using air as reference. UV resistance and thermal stability of the hybrids are largely dependent on the composition. The adhesive strength of the SiRs can be significantly improved by a small fraction of DGEHBA, with a marginal influence on UV resistance. However, increasing the epoxy proportion has a marked negative influence on thermal stability. Compounding stabilizers, especially thermal stabilizers, are essential, in particular for high epoxy content, if the hybrids are to be used for high‐brightness light‐emitting diode packaging. Copyright © 2011 Society of Chemical Industry  相似文献   

7.
A novel fluorinated biphenyl‐type epoxy resin (FBE) was synthesized by epoxidation of a fluorinated biphenyl‐type phenolic resin, which was prepared by the condensation of 3‐trifluoromethylphenol and 4,4′‐bismethoxymethylbiphenyl catalyzed in the presence of strong Lewis acid. Resin blends mixed by FBE with phenolic resin as curing agent showed low melt viscosity (1.3–2.5 Pa s) at 120–122°C. Experimental results indicated that the cured fluorinated epoxy resins possess good thermal stability with 5% weight loss under 409–415°C, high glass‐transition temperature of 139–151°C (determined by dynamic mechanical analysis), and outstanding mechanical properties with flexural strength of 117–121 MPa as well as tensile strength of 71–72 MPa. The thermally cured fluorinated biphenyl‐type epoxy resin also showed good electrical insulation properties with volume resistivity of 0.5–0.8 × 1017 Ω cm and surface resistivity of 0.8–4.6 × 1016 Ω. The measured dielectric constants at 1 MHz were in the range of 3.8–4.1 and the measured dielectric dissipation factors (tan δ) were in the range of 3.6–3.8 × 10?3. It was found that the fluorinated epoxy resins have improved dielectric properties, lower moisture adsorption, as well as better flame‐retardant properties compared with the corresponding commercial biphenyl‐type epoxy resins. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Methyl‐ and phenyl‐modified MQ resins have been prepared by cohydrolysis and condensation‐polymerization of the prepolymer of sodium silicate with SiO2/Na2O = 3.33 using the ethanol solution of hexamethyldisiloxane (MM), 1,1,3,3‐tetramethyl‐1,3‐divinyldisiloxane (TMDVS), methyldiphenylethoxysilane (MDPES), dimethylphenylethoxysilane (DMPES), or their dimers. The influence of different end‐capping agents on the composition and properties of the MQ resins has been investigated. Thermogravimetric analysis and differential scanning calorimetry results indicate that when the MQ resins are end capped with DMPES instead of MDPES, the resins were more easily purified and almost no high boiling point residuals were found in the phenyl MQ resins. The refractive indexes of the MQ resins were significantly affected by the phenyl group and their values could be adjusted by changing the amount of DMPES. The structures of the resins were characterized by 1H‐NMR and FT–IR spectroscopy. The M/Q ratios in the prepared MQ resins were calculated from the 1H‐NMR spectra or from elemental analysis or both. The M/Q values obtained agreed well with the changes of appearance and thermal stabilities of the MQ resins. The thermal stabilities of the MQ resins were greatly enhanced when DMPES was used. Phenyl‐modified MQ resins were in the form of white powders due to the rigidity of the phenyl group while methyl MQ resins exhibited a range of appearances, from transparent liquids to white powders, with the reduction of M/Q values. The method developed to calculate the M/Q values is useful for the characterization of MQ resins and their derivatives. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
The aim of this work was the synthesis of macroporous resins with large specific surface areas through the use of organic solvents (known as porogens or pore‐forming agents) for applications in hexavalent chromium (Cr+6) removal operations. The synthesis of these materials by suspension polymerization allowed the generation of macroporous structures. The comonomers 4‐vinylpyridine and divinylbenzene were considered in different ratios. Poly(vinyl alcohol) was used as a suspension agent in a mixture of toluene and hexane. The materials produced were characterized with Fourier transform infrared spectroscopy, elemental analysis, thermogravimetry, nitrogen adsorption, and scanning electron microscopy. The macroporous resin with the largest surface area (130 m2/g) was thermally stable up to 300°C and had a structure that included spherical domains with a mean diameter of 68 μm, uniform porosity, and expected high sorption capability. The sorption properties of the resins were evaluated for applications in water‐treatment operations to eliminate Cr+6 ions at a pH near 7. The advantages of these materials were their high removal capability, high selectivity, and fast adsorption kinetics at a pH 6.5. An aqueous solution of 4 ppm K2Cr2O7 was used to quantify the Cr+6 content by ultraviolet–visible spectroscopy. A remarkable sorption level (94%) of chromate ions (Cr+6) was obtained during a 15‐h period for the resin with the highest pyridine group content. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

10.
In this article, 2,2′‐bis[4‐(4‐maleimidephen‐oxy)phenyl)]propane (BMPP) resin and N,N‐4,4′‐bismaleimidodiphenylmethyene (BDM) resin blends were modified by diallyl bisphenol A (DABPA). The effects of the mole concentration of BMPP on mechanical properties, fracture toughness, and heat resistance of the modified resins were investigated. Scanning electron microscopy was used to study the microstructure of the fractured modified resins. The introduction of BMPP resin improves the fracture toughness and impact strength of the cured resins, whose thermal stabilities are hardly affected. Dynamic mechanical analysis shows that the modified resins can maintain good mechanical properties at 270.0°C, and their glass transition temperatures (Tg) are above 280.0°C. When the mole ratio of BDM : BMPP is 2 : 1(Code 3), the cured resin performs excellent thermal stability and mechanical property. Its Tg is 298°C, and the Charpy impact strength is 20.46 KJ/m2. The plane strain critical stress intensity factor (KIC) is 1.21 MPa·m0.5 and the plane strain critical strain energy release rate (GIC) is 295.64 J/m2. Compared with that of BDM/DABPA system, the KIC and GIC values of Code 3 are improved by 34.07% and 68.10%, respectively, which show that the modified resin presented good fracture toughness. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40395.  相似文献   

11.
N‐Phenylmaleimide–N‐(p‐hydroxy)phenylmaleimide–styrene terpolymer (HPMS), carrying reactive p‐hydroxyphenyl groups, was prepared and used to improve the toughness of cyanate ester resins. Hybrid modifiers composed of N‐phenylmaleimide–styrene copolymer (PMS) and HPMS were also examined for further improvement in toughness. Balanced properties of the modified resins were obtained by using the hybrid modifiers. The morphology of the modified resins depends on HPMS structure, molecular weight and content, and hybrid modifier compositions. The most effective modification of the cyanate ester resin was attained because of the co‐continuous phase structure of the modified resin. Inclusion of the modifier composed of 10 wt% PMS (Mw 136 000 g mol?1) and 2.5 wt% HPMS (hydroxyphenyl unit 3 mol%, Mw 15 500 g mol?1) led to 135% increase in the fracture toughness (KIC) for the modified resin with a slight loss of flexural strength and retention of flexural modulus and glass transition temperature, compared with the values for the unmodified resin. Furthermore, the effect of the curing conditions on the mechanical and thermal properties of the modified resins was examined. The toughening mechanism is discussed in terms of the morphological and dynamic viscoelastic behaviour of the modified cyanate ester resin system. © 2001 Society of Chemical Industry  相似文献   

12.
Both liquid‐ and solid‐state carbon‐13–nuclear magnetic resonance (13C‐NMR) spectroscopies were used to investigate the cure acceleration effects of three carbonates (propylene carbonate, sodium carbonate, and potassium carbonate) on liquid and cured phenol‐formaldehyde (PF) resins. The liquid‐phase 13C‐NMR spectra showed that the cure acceleration mechanism in the propylene carbonate‐added PF resin seemed to be involved in increasing reactivity of the phenol rings, whereas the addition of both sodium carbonate and potassium carbonate into PF resin apparently resulted in the presence of orthoortho methylene linkages. Proton spin‐lattice rotating frame relaxation time (TH) measured by solid‐state 13C cross polarization/magic‐angle spinning NMR spectroscopy was smaller for the cure‐accelerated PF resins than that of the control PF resin. The result indicated that the cure‐accelerated PF resins are less rigid than the control PF resin. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1284–1293, 2000  相似文献   

13.
Cyanate esters are a class of thermal resistant polymers widely used as thermal resistant and electrical insulating materials for electric devices and structural composite applications. In this article, the effect of 2,2′‐diallyl bisphenol A (DBA) on catalyzing the thermal curing of cyanate ester resins was studied. The curing behavior, thermal resistance, and thermal mechanical properties of these DBA catalyzed cyanate ester resins were characterized. The results show that DBA is especially suitable for catalyzing the polymerization of the novolac cyanate ester resin (HF‐5), as it acts as both the curing catalyst through depressing the exothermic peak temperature (Texo) by nearly 100°C and the toughening agent of the novolac cyanate ester resin by slightly reducing the elastic modulus at the glassy state. The thermogravimetric analysis and dynamic mechanical thermal analysis show that the 5 wt % DBA‐catalyzed novolac cyanate ester resin exhibits good thermal resistance with Td5 of 410°C and the char yield at 900°C of 58% and can retain its mechanical strength up to 250°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1775–1786, 2006  相似文献   

14.
Using the batch method, the retention of Ga(III) from HCl solutions by two gel‐type pyridine strong‐base anion exchangers containing 1‐methyl‐ or 1‐butyl‐4‐vinylpyridinium chloride structural units, called S1 and S2 resins, respectively, was studied. The influence of the HCl and Ga(III) concentrations as well as of the contact time between the resin and the liquid phase was investigated. The parameters, which characterize the retention process, were estimated using Langmuir and Freundlich isotherms. Both resins exhibited a higher affinity for gallium ions from a 6M HCl solution. According to Langmuir isotherms, maximum retention capacities of 44.44 and 60 mg Ga(III)/g dry resin for the S1 and S2 resins, respectively, were obtained. Freundlich isotherms provide additional proof for a higher affinity of the S2 resin for Ga(III) from HCl solutions. It is clear that the substituent length increase on N+ atoms led to an increasing affinity of the pyridine strong base anion exchangers toward Ga(III). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3440–3444, 2002  相似文献   

15.
Rare earth solid super acids SO42?/TiO2/Ln3+ have been successfully developed to synthesize vinyl end‐capped polydimethylsiloxane by ring opening polymerization of octamethylcyclotetrasiloxane (D4) end‐capped with 1,1,3,3‐tetramethyl‐1,3‐divinyldisiloxane. The features of ring opening polymerization reactions have been investigated in detail. The preferable conditions for the ring opening polymerization of D4 are as follows: [Nd3+] = 0.07 mol L?1 and [SO42?] = 1.85 mol L?1 in the immersing solution; the amount of SO42?/TiO2/Nd3+ calcined at 500 °C was 5 wt% of the amount of D4; polymerization at 80 °C for 1 h. The average molecular weights of the products obtained using various rare earth catalysts were in order Nd > La > Sm > Gd, which shows that the light rare earths were more favorable for higher molecular weight products than the heavy ones. According to the polymerization features, a cationic equilibrium reaction mechanism is proposed. © 2013 Society of Chemical Industry  相似文献   

16.
Aniline/p‐phenylenediamine copolymer [poly(ANI‐cop‐PDA)] was prepared by chemical oxidative polymerization. FTIR and 1H‐NMR analysis indicate that the poly(ANI‐cop‐PDA) is oligomer with end‐capped amino groups, which can cure epoxy resin. The anticorrosion performance of carbon steel (CS) samples coated by epoxy resin coating cured with poly(ANI‐cop‐PDA) and epoxy resin coating cured with triethylenetetramine exposed to 5 wt % NaCl and 0.1 mol/L HCl aqueous solution is studied by the potentiodynamic polarization and electrochemical impedance spectroscopy. The results show that the CS coated by epoxy resin coating cured with poly (ANI‐cop‐PDA) has more excellent corrosion protection than that of epoxy resin coating cured with triethylenetetramine. Raman spectroscopy analysis indicates that the surface of CS coated by epoxy resin coating cured with poly(ANI‐cop‐PDA) forms passive layer, which is composed of α‐Fe2O3. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Both liquid‐ and solid‐state 13C‐NMR spectroscopies were employed to investigate the cure‐acceleration effects of three carbonates [propylene carbonate (PC), sodium carbonate (NC), and potassium carbonate (KC)] on liquid and cured phenol–formaldehyde (PF) resins. The liquid‐phase 13C‐NMR spectra showed that the cure‐acceleration mechanism in the PC‐added PF resin seemed to be involved in increasing reactivity of the phenol rings, while the addition of both NC and KC into PF resin apparently resulted in the presence of orthoortho methylene linkages. Proton spin‐lattice rotating frame relaxation time (TH) measured by solid‐state 13C‐CP/MAS‐NMR spectroscopy was smaller for the cure‐accelerated PF resins than for that of the control PF resin. The result indicated that cure‐accelerated PF resins are less rigid than the control PF resin. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 841–851, 2000  相似文献   

18.
In this work, a novel melamine‐formaldehyde‐Fe3O4 foam was prepared from a mixture containing melamine‐ethanolamine‐formaldehyde resin, melamine‐glycol‐formaldehyde resin and carboxylated Fe3O4 nanoparticles by microwave foaming method. The two resins were characterized by 13C‐NMR, respectively. The structures of foams, mechanical and fire‐retardant properties were experimentally characterized separately by scanning electron microscopy, universal testing machine, limit oxygen index, thermogravimetry‐differential thermal analysis, and Fourier transform infrared spectra. The effects of the resin viscosity, emulsifier, nucleating agent, curing agent, silicone oil, microwave heating time and blowing agent on the structure of foam were investigated. Results showed that the properties of foam were decided by not only the molecular structure but also structure of foam, and the carboxylated Fe3O4 nanoparticles can improve the toughness and flame retardant properties of magnetic foam obviously from both aspects. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2688–2697, 2013  相似文献   

19.
The bisphenol‐containing 4,4′‐biphenylene moiety was prepared by the reaction of 4,4′‐bis(methoxymethyl) biphenyl with phenol in the presence of p‐toluenesulfonic acid. The bisphenol was end‐capped with the cyanate moiety by reacting with cyanogen chloride and triethylamine in dichloromethane. Their structures were confirmed by Fourier transform infrared spectroscopy, 1H‐NMR, and elemental analysis. Thermal behaviors of cured resin were studied by differential scanning calorimetry, dynamic mechanical analysis, and TGA. The flame retardancy of cured resin was evaluated by limiting oxygen index (LOI) and vertical burning test (UL‐94 test). Because of the incorporation of rigid 4,4′‐biphenylene moiety, the cyanate ester (CE) resin shows good thermal stability (Tg is 256°C, the 5% degradation temperature is 442°C, and char yield at 800°C is 64.4%). The LOI value of the CE resin is 42.5, and the UL‐94 rating reaches V‐0. Moreover, the CE resin shows excellent dielectric property (dielectric constant, 2.94 at 1 GHz and loss dissipation factor, 0.0037 at 1 GHz) and water resistance (1.08% immersed at boiling water for 100 h). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Bio‐based high performance thermosetting resins have been urgently required by cutting‐edge fields for meeting sustainable development. A new kind of high performance thermosetting resins (BA‐n) with good processability, high thermal resistance, and mechanical properties was developed based on 4,4′‐bismaleimidodiphenylmethane (BDM) and renewable bis(5‐allyloxy)‐4‐methoxy‐2‐methylphenyl)methane (ABE) from bio‐based lignin derivative. The effect of the molar ratio of allyl to imide (n) on structures and properties of BA resins were systematically researched. BA‐n resins have much better processability, thermal, and mechanical properties than their petroleum‐based counterparts, 2,2′‐diallylbisphenol A‐modified BDM (BD‐n) resins. Compared with BD‐0.86, the best available bismaleimide (BMI) resin, BA‐0.86 not only has 6 h longer process window and 13.7 °C higher glass transition temperature, but also owns the highest flexural strength and modulus among all bio‐based allyl compound‐modified BMI resins reported. The origin behind these attractive performances of BA resins is revealed by discussing the unique crosslinked structure. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45947.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号