首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is concerned with the observer‐based H control for continuous‐time networked control systems (NCSs) considering packet dropouts and network‐induced delays. The packet dropouts and network‐induced delays in the sensor‐to‐controller (S‐C) channel and network‐induced delays in the controller‐to‐actuator (C‐A) channel are taken into full consideration. By taking the non‐uniform distribution characteristic of the arrival instants of actually adopted controller inputs into account, a new model for continuous‐time NCSs is established. To reduce the conservatism of modelling, a linear estimation‐based measurement output estimation method is introduced. Based on the newly established model and a Lyapunov functional, new controller design methods are proposed. A numerical example is given to illustrate the effectiveness and merits of the derived results.  相似文献   

2.
In this paper, the fault estimation problem is studied for a class of nonlinear networked control systems with imperfect measurements. A novel measurement model is proposed to take time‐varying delays, random packet dropouts, and the packet‐dropout compensation into consideration simultaneously. After properly augmenting the states of the original system and the fault estimation filter, the addressed fault estimation problem is converted into an auxiliary H filtering problem for a stochastic parameter system. In terms of matrix inequalities, a sufficient condition for the existence of the fault estimation filter is derived that depends on the packet dropout rate, the upper and lower bounds of time delays, and the size of the consecutive packet dropouts. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method.  相似文献   

3.
This paper is concerned with the H control problem for networked control systems (NCSs) with random packet dropouts. The NCS is modeled as a sampled‐data system which involves a continuous plant, a digital controller, an event‐driven holder and network channels. In this model, two types of packet dropouts in the sensor‐to‐controller (S/C) side and controller‐to‐actuator (C/A) side are both considered, and are described by two mutually independent stochastic variables satisfying the Bernoulli binary distribution. By applying an input/output delay approach, the sampled‐data NCS is transformed into a continuous time‐delay system with stochastic parameters. An observer‐based control scheme is designed such that the closed‐loop NCS is stochastically exponentially mean‐square stable and the prescribed H disturbance attenuation level is also achieved. The controller design problem is transformed into a feasibility problem for a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed design method. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

4.
This paper is concerned with the H control problem for a class of systems with bounded random delays and consecutive packet dropouts that exist in both sensor‐to‐controller channel and controller‐to‐actuator channel during data transmission. A new model is developed to describe possible random delays and packet dropouts by two groups of Bernoulli distributed stochastic variables. To avoid the state augmentation, a full‐order observer‐based feedback controller is designed via LMI approach. Based on the Lyapunov theory, a sufficient condition is provided to guarantee the closed‐loop networked system to be asymptotically mean‐square stable and achieve the prescribed H disturbance‐rejection‐attenuation level. The simulation examples illustrate the effectiveness of the proposed method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, the finite‐horizon H fault estimation problem is investigated for a class of uncertain nonlinear time‐varying systems subject to multiple stochastic delays. The randomly occurring uncertainties (ROUs) enter into the system due to the random fluctuations of network conditions. The measured output is quantized by a logarithmic quantizer before being transmitted to the fault estimator. Also, successive packet dropouts (SPDs) happen when the quantized signals are transmitted through an unreliable network medium. Three mutually independent sets of Bernoulli‐distributed white sequences are introduced to govern the multiple stochastic delays, ROUs and SPDs. By employing the stochastic analysis approach, some sufficient conditions are established for the desired finite‐horizon fault estimator to achieve the specified H performance. The time‐varying parameters of the fault estimator are obtained by solving a set of recursive linear matrix inequalities. Finally, an illustrative numerical example is provided to show the effectiveness of the proposed fault estimation approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
This paper deals with the H filtering problem for a class of discrete time‐varying systems with state saturations, randomly occurring nonlinearities as well as successive packet dropouts. Two mutually independent sequences of random variables that obey the Bernoulli distribution are employed to describe the random occurrence of the nonlinearities and packet dropouts. The purpose of the addressed problem is to design a time‐varying filter such that the H disturbance attenuation level is guaranteed, over a given finite‐horizon, for the filtering error dynamics in the presence of saturated states, randomly occurring nonlinearities, and successive packet dropouts. By introducing a free matrix with its infinity norm less than or equal to 1, the error state is bounded by a convex hull so that some sufficient conditions obtained via solving a certain set of recursive nonlinear matrix inequalities. Furthermore, the obtained results are extended to the case when state saturations are partial. Two numerical simulation examples are provided to demonstrate the effectiveness and applicability of the proposed filter design approach. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
This paper is concerned with the H performance analysis for networked control systems with transmission delays and successive packet dropouts under stochastic sampling. The parameter uncertainties are time‐varying norm‐bounded and appear in both the state and input matrices. If packet loss is considered the same as time delay, when models the networked control systems with successive packet dropouts and delays as ordinary linear system with input‐delay approach, due to sampling period is stochastic, then the delay caused by packet losses is a stochastic variable, which leads to difficulties in the stability analysis of the considered system. However, if we can transform the system with stochastic delay into a continuous system with stochastic parameter, we can solve the problem. In this paper, by assuming that the network packet loss rate and employing the information of probabilistic distribution of the time delays, the stochastic sampling system is transformed into a continuous‐time model with stochastic variable, which satisfies a Bernoulli distribution. By linear matrix inequality approach, sufficient conditions are obtained, which guarantee the robust mean‐square exponential stability of the system with an H performance. What's more, an H controller design procedure is then proposed, and a less conservative result is obtained by taking the probability into consideration. Finally, a numerical simulation example is employed to show the effectiveness of the obtained results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
在网络系统中由于连接传感器和滤波器的网络带宽有限,系统测量数据在传输中会出现随机时延甚至丢失. 本文讨论了具有一步随机时延和丢包的网络系统的H∞滤波器设计问题.基于新近提出的同时描述随机时延和丢包的模型,利用线性矩阵不等式方法设计线性滤波器,使得滤波误差系统均方指数稳定,并具有给定的H∞性能. 滤波器参数通过求解一个线性矩阵不等式得到.仿真研究说明了所提出算法的有效性.  相似文献   

9.
This paper focuses on a new H controller design issue for networked control systems with external disturbance as well as random time delays and packet dropouts in forward and feedback channels, which are modeled by multiple Markov chains in a unified style. The output feedback controller is designed to stabilize the networked control system and also achieves the prescribed H disturbance attenuation level. The addressed controller design problem is transformed into a nonlinear minimization problem with LMI constraints. An illustrative example is provided to show the effectiveness of the proposed methods. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
This paper deals with the problem of network‐based H control for a class of uncertain stochastic systems with both network‐induced delays and packet dropouts. The networked control system under consideration is represented by a stochastic model, which consists of two successive delay components in the state. The uncertainties are assumed to be time varying and norm bounded. Sufficient conditions for the existence of H controller are proposed to ensure exponentially stable in mean square of the closed‐loop system that also satisfies a prescribed performance. The conditions are expressed in the frame of linear matrix inequalities (LMIs), which can be verified easily by means of standard software. Two practical examples are provided to show the effectiveness of the proposed techniques. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
研究了具有时变时滞与多数据包丢失的网络控制系统(networked control systems,NCSs)的量化H∞控制问题.同时考虑传感器-控制器间的测量通道及控制器-执行器间的控制通道的多数据包丢失,并将其用满足Bernoulli分布的随机变量来表示.控制输入信号和测量输出信号分别在传感器和控制器两侧进行对数量化,量化误差描述为扇区有界不确定性.利用Lyapunov理论和线性矩阵不等式方法,得到了使得闭环NCSs满足一定H∞性能指标的均方意义下指数稳定充分条件,并给出了基于观测器的时滞相关控制器设计方法.最后,通过实例证明了该方法的有效性.  相似文献   

12.
This paper is concerned with the quantized state feedback H control problem for discrete‐time linear time‐invariant systems. The quantizer considered here is dynamic and composed of an adjustable “zoom” parameter and a static quantizer. Static quantizer ranges are with practical significance and fully considered here. A quantized H controller design strategy is proposed with taking quantizer errors into account, where an iterative linear matrix inequality (LMI) based optimization algorithm is developed to minimize static quantizer ranges with meeting H performance requirement for quantized closed‐loop systems. An example is presented to illustrate the effectiveness of the proposed method. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

13.
This paper is concerned with network‐based H stabilization for stochastic systems, where network‐induced delays, packet dropouts, and packet disorders are taken into account simultaneously. The packet disorders arising from both the sampler‐to‐controller channel and the controller‐to‐actuator channel are considered by introducing a logic controller and a logic zero‐order hold. The network‐induced delays and packet dropouts are modeled as a constant delay plus a non‐differentiable time‐varying delay in the input. By employing Lyapunov–Krasovskii functional approach, we establish results that parallel well‐known bounded real Lemmas. More specifically, these results provide conditions to bound the H level of the system, which means the worst case energy of the output of the system when subjected to a unitary norm deterministic disturbance signal. On the basis of these results, suitable network‐based H controllers are designed by using cone complementary linearization method. An air vehicle system is finally taken as an example to show the effectiveness of the proposed method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
This paper investigates the problem of network‐based control for stochastic plants. A new model of stochastic time‐delay systems is presented where both network‐induced delays and packet dropouts are taken into consideration for a sampled‐data network‐based control system. This model consists of two successive delay components in the state, and we solve the network‐based H control problem based on this model by a new stochastic delay system approach. The controller design for the sampled‐data systems is carried out in terms of linear matrix inequalities. Finally, we illustrate the methodology by applying these results to an air vehicle control problem. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
This paper focuses on the filter design problem for semi‐Markov jump linear systems. The system outputs are transmitted to the filter via networks, and it is assumed that the transmission is imperfect with data packet dropouts subject to the Bernoulli random binary distribution. A σ‐error mean square stability criterion is first derived for the underlying systems. On the basis of the criterion, the H performance analysis is conducted. By constructing a time‐varying Lyapunov function, a time‐varying H filter scheme is investigated. Because the presented approach can cover the mode‐dependent and mode‐independent time‐invariant H filter schemes as special cases, the conservatism of the derived results is less than those of the time‐invariant filter schemes. An active suspension system with activator uncertainties is lastly presented to illustrate the effectiveness and feasibility of the derived theoretical results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, the mixed H 2/H control problem is investigated for a class of nonlinear discrete-time networked control systems with random network-induced delays, stochastic packet dropouts and probabilistic sensor faults. The packet dropouts process is modeled as a homogeneous Markov chains taking values in a finite state space. Network-induced delays occur in a random way with known upper bound. A set of stochastic variables are exploited to describe sensor faults with different probabilistic density functions. By using a delay-dependent Lyapunov functional, a mode-dependent mixed H 2/H controller is designed to guarantee both stochastic stability of the closed-loop system and the prescribed H2, H¥ control performances. Sufficient conditions for the existence of the mixed H 2/H controller are presented in terms of a series of LMIs. If these LMIs are feasible, then the modedependent mixed H 2/H controller can be obtained. A numerical example is given to demonstrate the effectiveness of the developed method.  相似文献   

17.
This paper is concerned with the robust H finite‐horizon filtering problem for discrete time‐varying stochastic systems with multiple randomly occurred sector‐nonlinearities (MROSNs) and successive packet dropouts. MROSNs are proposed to model a class of sector‐like nonlinearities that occur according to the multiple Bernoulli distributed white sequences with a known conditional probability. Different from traditional approaches, in this paper, a time‐varying filter is designed directly for the addressed system without resorting to the augmentation of system states and measurement, which helps reduce the filter order. A new H filtering technique is developed by means of a set of recursive linear matrix inequalities that depend on not only the current available state estimate but also the previous measurement, therefore ensuring a better accuracy. Finally, two illustrative examples are used to demonstrate the effectiveness and applicability of the proposed filter design scheme. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
This paper investigates the observer-based H fuzzy control problem for a class of discrete-time fuzzy mixed delay systems with random communication packet losses and multiplicative noises, where the mixed delays comprise both discrete time-varying and distributed delays. The random packet losses are described by a Bernoulli distributed white sequence that obeys a conditional probability distribution, and the multiplicative disturbances are in the form of a scalar Gaussian white noise with unit variance. In the presence of mixed delays, random packet losses and multiplicative noises, sufficient conditions for the existence of an observer-based fuzzy feedback controller are derived, such that the closed-loop control system is asymptotically mean-square stable and preserves a guaranteed H performance. Then a linear matrix inequality approach for designing such an observer-based H fuzzy controller is presented. Finally, a numerical example is provided to illustrate the effectiveness of the developed theoretical results.  相似文献   

19.
In this article, the problem of robust sampled-data H output tracking control is investigated for a class of nonlinear networked systems with stochastic sampling and time-varying norm-bounded uncertainties. For the sake of technical simplicity, only two different sampling periods are considered, their occurrence probabilities are given constants and satisfy Bernoulli distribution, and can be extended to the case with multiple stochastic sampling periods. By the way of an input delay, the probabilistic system is transformed into a stochastic continuous time-delay system. A new linear matrix inequality-based procedure is proposed for designing state-feedback controllers, which would guarantee that the closed-loop networked system with stochastic sampling tracks the output of a given reference model well in the sense of H . Conservatism is reduced by taking the probability into account. Both network-induced delays and packet dropouts have been considered. Finally, an illustrative example is given to show the usefulness and effectiveness of the proposed H output tracking design.  相似文献   

20.
This paper examines various constraints of networked control systems (NCSs) such as network-induced random delays, successive packet dropouts and Poisson noise. Time delays are represented as modes of Markov chain and successive packet dropouts are modeled using Poisson probability distribution. For each delay-mode, a separate Poisson distribution is used with the help of an indicator function. Poisson noise is incorporated in the design to cater sudden network link failures and power shutdowns. After modeling these constraints, a stability criterion is proposed by using Lyapunov-Krasovskii functional. On the basis of the stability criteria, sufficient conditions for the existence of a robust H state feedback controller are given in terms of bilinear matrix inequalities (BMIs). Later, BMIs are converted into quasi-convex linear matrix inequalities (LMIs) and are solved by using a cone complementarity linearizing algorithm. The effectiveness of the proposed scheme is elaborated with the help of two simulation examples. Moreover, the effects of successive packet dropouts and Poisson noise on H performance are analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号