首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maleic anhydride (MAH) was grafted onto ethylene vinyl acetate copolymer (EVA) in the internal mixer in the presence of dicumyl peroxide (DCP), and a prepared reactive compatibilizer, MAH-g-EVA, was blended with Poly (ethylene glycol-co-cyclohexane-1,4-dimethanol terephthalate) (PETG). The gel content determination and element analysis (EA) was performed to confirm the grafting reaction. It was found that grafting reaction of MAH on to EVA could compete with crosslinking reaction of DCP during the modification process. In addition, the introduction of small amount of MAH showed a great effect on reducing gel content by decreasing crosslink reaction. As MAH content increased, grafted MAH concentration increased, whereas the grafting yield decreased. It was also confirmed that MAH-g-EVA acted as a reactive compatibilizer in the blend with PETG, and enhanced compatibility by reacting with the hydroxyl end groups, OH, of PETG. Addition of EVA in the blend leads a plastic deformation of PETG, and MAH had a great effect on enhancing interfacial adhesion resulting in significant increasing of % strain; however, improved compatibility could not be changed much in low strain tensile strength and Young's modulus. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
Polymer blend nanocomposites have been developed by solution method using ethylene propylene diene terpolymer (EPDM), ethylene vinyl acetate (EVA‐45) copolymer, and organically modified layered silicate. Morphological investigation made by wide‐angle X‐ray diffraction and transmission electron microscopic analysis indicates intercalated structure of EPDM/EVA nanocomposites with partial disorder. Scanning electron microscopic studies exhibit the phase behavior of EPDM/EVA blend nanocomposites. Dynamic mechanical thermal analysis shows a significant increase in storage modulus in the rubbery plateau. The decrease in damping (tan δ) value and enhanced glass‐transition temperature (Tg) demonstrate the reinforcing effect of layered silicate in the EPDM/EVA blend matrix. The tensile modulus of these nanocomposites also showed a significant improvement with the filler content. The main chain scission of EPDM/EVA blend nanocomposites compared with the neat EPDM/EVA blend showed substantial improvement in thermal stability in nitrogen, whereas a sizeable increase is observed in air. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

3.
Graft copolymers of poly(ethylene‐co‐vinyl acetate) (EVA) grafted with polystyrene (PS) with different molecular weight and different EVA/PS ratio were prepared by coupling reaction between acyl chloride functionalized PS (PS‐COCl) and hydrolyzed EVA. PS‐COCl with controlled molecular weight was prepared by anionic polymerization of styrene, followed by end capping with phosgene. The effect of the molecular architecture of the graft copolymer on the compatibilization of PS/EVA blends was investigated. Substantial improvement in the elongation at break and ductility was observed using the graft copolymer with PS segments with molecular weight as high as 66,000 g/mol and with a PS proportion equal or higher than EVA. The effect of the compatibilization on the morphology was also investigated by scanning electron microscopy and atomic force microscopy. The blend that presented the highest value of elongation at break also displayed dispersed phase constituted by inclusions of the PS phase inside the EVA particle forming a cocontinuous structure, as observed by AFM. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

4.
The radiation‐induced crosslinking, compatibility, and surface modification of low density polyethylene/ethylene vinyl acetate blends (LDPE/EVA) were investigated. The structural and physical properties were characterized in terms of gel content, hot set, mechanical properties, contact angle, and surface free energy. The highest crosslink density was obtained at 20 wt % of EVA. Gel content of LDPE/EVA blends was increased with increasing irradiation dose, vinyl acetate (VA), and EVA contents. The hot set results are consistent with the gel content data. Mechanical testing showed that the tensile strength of samples increased with increasing irradiation dose up to 180 kGy, whereas the elongation at break was decreased with increasing irradiation dose. Contact angle measurements showed that the surface hydrophillicity of LDPE blend was increased with increasing irradiation dose and contents of both VA and EVA. The surface free energy was greatly dependent on irradiation dose and content of both VA and EVA. The total surface free energies of different LDPE formulations were in the range 17.25–32.51 mN/m, in which the polar (pσ) and disperse (dσs) values were within the range 16.52–26.6 and 0.9–5.91 mN/m, respectively. In conclusion, electron beam irradiation and blending LDPE with EVA improved the wettability or adhesion properties of LDPE/EVA blends. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

5.
A method concerning with the simultaneous reinforcing and toughening of polypropylene (PP) was reported. Dynamical cure of the epoxy resin with 2‐ethylene‐4‐methane‐imidazole (EMI‐2,4) was successfully applied in the PP/maleic anhydride‐grafted ethylene‐vinyl acetate copolymer (MAH‐g‐EVA), and the obtained blends named as dynamically cured PP/MAH‐g‐EVA/epoxy blends. The stiffness and toughness of the blends are in a good balance, and the smaller size of epoxy particle in the PP/MAH‐g‐EVA/epoxy blends shows that MAH‐g‐EVA was also used as a compatibilizer. The structure of the dynamically cured PP/MAH‐g‐EVA/epoxy blends is the embedding of the epoxy particles by the MAH‐g‐EVA. The cured epoxy particles as organic filler increases the stiffness of the PP/MAH‐g‐EVA blends, and the improvement in the toughness is attributed to the embedded structure. The tensile strength and flexural modulus of the blends increase with increasing the epoxy resin content, and the impact strength reaches a maximum of 258 J/m at the epoxy resin content of 10 wt %. DSC analysis shows that the epoxy particles in the dynamically cured PP/MAH‐g‐EVA/epoxy blends could have contained embedded MAH‐g‐EVA, decreasing the nucleating effect of the epoxy resin. Thermogravimetric results show the addition of epoxy resin could improve the thermal stability of PP, the dynamically cured PP/MAH‐g‐EVA/epoxy stability compared with the pure PP. Wide‐angle x‐ray diffraction analysis shows that the dynamical cure and compatibilization do not disturb the crystalline structure of PP in the blends. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
This paper describes a study of melt-rheological properties of the binary blend of isotactic polypropylene (PP) and ethylene–vinyl acetate copolymer (EVA) at varying blending ratios (from 0 to 40 wt % EVA content) and using three samples of EVA containing different vinyl acetate contents (VA %), viz. 9, 12, and 19%. Measurements made on a capillary rheometer at three different temperatures (210, 220, and 230°C) in a shear stress range of 104–106 Pa (shear rate 101–104 s?1) are presented and discussed for the effects of blend composition and shear stress on the flow curves, melt viscosity and melt elasticity. Morphology of the blend studied through scanning electron microscopy revealed distinct differences in size and number density of dispersed EVA droplets, which are discussed in terms of the variation of average size and number density of the dispersed EVA droplets as a function of blend composition and shear stress. Melt-rheological properties and morphology of dispersion are correlated and found quite consistent.  相似文献   

7.
Mixing torque, morphology, tensile properties and swelling studies of natural rubber/ethylene vinyl acetate copolymer blends were studied. Two series of unvulcanized blends, natural rubber/ethylene vinyl acetate (SMRL/EVA) copolymer blend and epoxidized natural rubber (50% epoxidation)/ethylene vinyl acetate (ENR-50/EVA) copolymer blend were prepared. Blends were prepared using a laboratory internal mixer, Haake Rheomix polydrive with rotor speed of 50 rpm at 120°C. Results indicated that mixing torque value and stabilization torque value in ENR-50 blends are lower than SMRL blends. The process efficiency of ENR-50/EVA blends is better due to less viscous nature of the blend compared to SMRL/EVA blends as indicated in stabilization torque graph. Tensile properties like tensile strength, M100 (modulus at 100% elongation) and E b (elongation at break) increase with increasing EVA fraction in the blend. At the similar blend composition, ENR-50 blend shows better tensile properties than SMRL blends. In oil resistance test, swelling percentage increased with immersion time and rubber composition. At a similar immersion time, ENR-50 blends exhibit better oil resistance compared to SMRL blends. Scanning electron microscopy (SEM) of tensile fractured surface indicated that EVA/ENR-50 blends need higher energy to cause catastrophic failure compared to EVA/SMRL blends. In etched cryogenically fractured surface, size and distribution of holes due to extraction of rubber phase by methyl ethyl ketone (MEK) were studied and holes became bigger as rubber composition increased due to coalescence of rubber particle.  相似文献   

8.
The influence of the composition and interfacial tension on the phase size in immiscible polymer blends with a viscosity ratio close to unity has been investigated with poly(methyl methacrylate)/poly(ethylene terephthalate) blends and data from various works. For all the blends considered, the dispersed particle diameter (d) is proportional to the interfacial tension of the system. When the dispersed‐phase content (?) is below 1%, there is minimal change of d with increasing ?. When ? is between 1 and 20%, d is proportional to ?0.4. It seems that the processing conditions do not influence the morphology significantly for blend systems with a viscosity ratio close to unity.© 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1791–1799, 2003  相似文献   

9.
Low-density polyethylene/ethylene–vinyl acetate copolymer (LDPE/EVA) blend was irradiated by γ-ray and then expanded by heat as a foamed material. The EVA content in the LDPE/EVA blend was benefited to form a gel. The gel fraction values of LDPE/EVA blend with 30% EVA content were higher than those of other blends in a same given dose; its gel fraction value was 1.7 times as those values of the LDPE without EVA. The gel fractions of the LDPE/EVA blend were increased with radiation dose in oxygen, in air, and in nitrogen, and the formation of gel was limited by oxygen. The oxidation products of the foam of the LDPE/EVA blend were observed in nitrogen, in oxygen by Fourier transform IR spectra. The LDPE/EVA blend system has no protection effect from oxidation in comparison with the LDPE system without EVA, which has less oxidation product than those without EVA in a same given gel fraction. The gel fraction of the LDPE/EVA blend around 25–35%, radiation dose 25±5 kGy, irradiated by γ-ray in air or in nitrogen, with higher expansion ratio (19), smaller cell diameter (0.175 mm), lower apparent density (0.042 g/cm3), higher tensile strength (0.40 MPa), and longer elongation at break (290–360%) foam of the LDPE/EVA blend were selected. These were optimum condition for application in this system. The relations among gel fraction of the LDPE/EVA blend, expansion ratio, apparent density, average cell diameter, and mechanical properties of the foam were discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
Foamed materials (EVA/ESI) have been prepared from blends of ethylene‐vinyl acetate copolymer (EVA) and ethylene‐styrene interpolymers (ESI) in the presence of various amounts of dicumyl peroxide (DCP). Four ESIs of different compositions were employed in this study; their styrene contents ranged from 30 to 73 wt% and their Tg ranged from −2 to 33°C. It has been found that microcellular morphology, degree of crosslinking and expansion ratio were strongly affected by the DCP concentration and the type of ESI employed. A minimum degree of crosslinking was required for making good foams and the same degree of crosslinking could be achieved by employing a smaller amount of DCP for an EVA/ESI blend having a higher styrene content. In contrast to other EVA blends, such as EVA/LDPE, these EVA/ESI blends exhibited no existence of any optimum DCP concentration, and the α glass transition temperatures of the foams varied with the ESI type, covering a wide span from 0°C to 37°C. Therefore, it was possible to tailor the Tg of an EVA/ESI blend by choosing an appropriate type of ESI. Furthermore, by correctly tailoring the Tg, the EVA/ESI foam could be made into a rubbery material with a custom‐designed damping factor. Tensile strength and modulus of the EVA/ESI foams increased generally with an increase in the styrene content, with the exception that ESIs with very low styrene content will confer on the blend a high modulus at small strain and a large elongation at break.  相似文献   

11.
A novel thermoplastic vulcanizate (TPV) based on the blends of ethylene vinyl acetate/thermoplastic polyurethane (EVA/TPU) at various blend ratios has been developed via dynamic vulcanization at 180 °C using di‐(2‐tert‐butyl peroxy isopropyl) benzene (DTBPIB) peroxide as the cross‐linking agent. Modification of the EVA/TPU blends via dynamic crosslinking significantly improves the tensile strength and modulus of the system and the improvement is more significant for EVA/TPU 50/50 and 60/40 blends. AFM study shows that crosslinked EVA particles are dispersed in the continuous TPU matrix and the dispersed EVA domain sizes are relatively smaller in EVA/TPU 50/50 and 60/40 blends leading to good mechanical properties. FTIR spectroscopy has been used to characterize the specific chemical changes occurring due to dynamic vulcanization. This TPV has excellent retention of physico‐mechanical properties even after reprocessing twice and the blends also have very good thermal resistance as indicated by aging study. The samples were found to exhibit remarkable improvement in oil resistance property as compared to their uncrosslinked counterpart. The creep behavior of the blends significantly improves after dynamic crosslinking and blends with higher TPU content show better creep resistance. Volume resistivity of all the peroxide vulcanized blends is in the range of 1013 ohm cm, which is suitable for cable sheathing application. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43706.  相似文献   

12.
The toughening of polyethylene terephthalate (PET)/amorphous copolyester (PETG) blends using a maleic anhydride grafted mixture (TPEg) of polyethylene‐octene elastomer and a semicrystalline polyolefin plastic (60/40 by weight) was examined. The TPEg was more effective in toughening PETG than PET, although the dispersion qualities of the TPEg particles in PET and PETG matrices were very similar. At the fixed TPEg content of 15 wt %, replacing partial PET by PETG resulted in a sharp brittle‐ductile transition when the PETG content exceeded the PET content. Before the transition, PET/PETG blends were not toughened with the TPEg of 15 wt %, whereas after the transition, the PET/PETG blends with 15 wt % of TPEg, similar to the PETG/TPEg (85/15) binary blend, maintained a super‐tough level. The impact‐fractured surfaces of the PET/PETG/TPEg blends were also evaluated. When PETG content was lower than PET content, the ternary blend showed a brittle feature in its impact‐fractured surface, similar to the PET/TPEg (85/15) binary blend. While PETG content exceeded PET content, however, the impact‐fractured surface of the ternary blend was very similar to that of PETG/TPEg (85/15) binary blend, exhibiting intensive cavitation and massive matrix shear yielding, which were believed to be responsible for the super‐tough level of the blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 797–805, 2003  相似文献   

13.
BACKGROUND: Polymer blending creates new materials with enhanced mechanical, chemical or optical properties, with the exact properties being determined by the type of morphology and the phase dimension of the blend. In order to control blend properties, morphology development during processing needs to be understood. The formation and evolution of polypropylene/poly(ethylene‐1‐octene) (PP/POE) blend morphology during blending are qualitatively represented by a series of time‐dependent scanning electron microscopy (SEM) patterns. The area diameter and its distribution of dispersed phase domains are discussed in detail. In order to characterize the formation and evolution of phase morphology quantitatively, two fractal dimensions, Ds and Dd, and their corresponding scaling functions are introduced to analyze the SEM patterns. RESULTS: The evolution of the area diameter indicates that the major reduction in phase domain size occurs during the initial stage of melt mixing, and the domain sizes show an increasing trend due to coalescence with increasing mixing times. The distribution in dispersed phase dimension obeys a log‐normal distribution, and the two fractal dimensions are effective to describe the phase morphology: Ds for dispersed phase dimension and Dd for the distribution in it. CONCLUSIONS: The fractal dimensions Ds and Dd can be used quantitatively to characterize the evolutional self‐similarity of phase morphology and the competition of breakup and coalescence of dispersed phase domains. It is shown that the fractal dimensions and scaling laws are useful to describe the phase morphology development at various mixing times to a certain extent. Copyright © 2007 Society of Chemical Industry  相似文献   

14.
In this article, maleated–grafted ethylene‐co‐vinyl acetate (EVA‐g‐MA) was used as the interfacial modifier for polypropylene/polyamide‐6 (PP/PA6) blends, and effects of its concentration on the mechanical properties and the morphology of blends were investigated. It was found that the addition of EVA‐g‐MA improved the compatibility between PP and PA6 and resulted in a finer dispersion of dispersed PA6 phase. In comparison with uncompatibilized PP/PA6 blend, a significant reduction in the size of dispersed PA6 domain was observed. Toluene‐etched micrographs confirmed the formation of interfacial copolymers. Mechanical measurement revealed that the addition of EVA‐g‐MA markedly improved the impact toughness of PP/PA6 blend. Fractograph micrographs revealed that matrix shear yielding began to occur when EVA‐g‐MA concentration was increased upto 18 wt %. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99:3300–3307, 2006  相似文献   

15.
Two types of wax were added to a ethylene vinyl acetate (EVA) copolymer/aromatic hydrocarbon resin (tackifier) blend in the molten state and the miscibility, viscoelastic and adhesion properties of ternary blends as hot-melt adhesives (HMAs) were investigated. Miscibility and viscoelastic properties were studied using differential scanning calorimetry (DSC), Brookfield viscometry and dynamic mechanical thermal analysis (DMTA), and their adhesion strength was determined in terms of single lap shear strength. DSC thermograms of both types of waxes showed their melting peaks in a similar region to that of EVA/tackfier blend. It was difficult to evaluate the miscibility of ternary blends using DSC because the melting peaks of the waxes overlapped with those of the EVA/tackifier blend, although the glass transition temperature (T g) of the ternary blend systems slightly increased with increasing wax concentration. However, their storage modulus (E′) increased slightly and loss tangent (tan δ) showed different peaks when two types of wax were added to the EVA/tackifier blend. Therefore, the miscibility of EVA/tackifier blend altered with addition of waxes. In addition, their melt viscosity decreased with increasing wax concentration. Furthermore, the adhesion strength of the ternary blends decreased with increasing wax concentration, despite the increment of storage modulus. These results suggested that the ternary blends of EVA/tackifier/wax were heterogeneous.  相似文献   

16.
The combination of different types of organo‐modified montmorillonite (MMT) with aluminum hydroxide (aluminum trihydrate—ATH), as a flame retardant system for polyethylene‐ethylene vinyl acetate (LDPE/EVA), blends were studied. Five different types of organically modified montmorillonite clays, each with different modifier, were used. The structural characterization was carried out by X‐ray diffraction (XRD) and scanning electron microscopy in transmission mode (STEM). The mechanical and rheological properties were also evaluated. The XRD analysis showed a clear displacement of the d001 signal, which indicates a good degree of intercalation, especially for the MMT‐I28 and MMT‐20, from Nanocor and Southern Clay Products, respectively. The presence of ATH and the compatibilizer did not have any effect on the exfoliation of the studied samples. The thermal stability and flame retardant properties were evaluated by thermogravimetric analysis (TGA), limiting oxygen index (LOI—ASTM D2863), and flammability tests (Underwriters Laboratory—UL‐94). The effect of different compatibilizers on the clay dispersion and exfoliation was studied. The results indicated that the addition of montmorillonite makes it possible to substitute part of the ATH filler content while maintaining the flame retardant requirements. The thermal stability of MMT/ATH‐filled LDPE/EVA blends presented a slight increase over the reference ATH‐filled LDPE/EVA blend. Compositions with higher clay content (10 wt %) showed better physicochemical properties. The increased stability of the higher clay content compositions results from the greater inorganic residual formation; this material has been reported to impart better performance in flammability tests. The mechanical properties and flame retardancy remained similar to those of the reference compound. The reduced ATH content resulted in lower viscosities and densities, facilitating the processing of the polymer/ATH/clay compounds. Extrusion of these compounds produced a lower pressure in the extrusion head and required reduced electrical power consumption. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Phase morphology and evolution during solidification process of polypropylene and poly(ethylene‐co‐octene) (PP/PEOc) blend in an internal mixer was investigated by means of scanning electron microscopy (SEM) and in‐line back small‐angle laser scattering (BSALS). The average particle diameter (dp) and the average characteristic length (Lm) were calculated by the pattern analysis of SEM micrographs to describe morphological variation with temperature during solidification process under the natural cooling condition. Furthermore, a fractal dimension (Df) based on the probability density of the character length was calculated in this study to describe the distribution of main sizes of the dispersed phase particles. Structure parameters, such as heterogeneity distance (lc) and integral invariant (Q), were also calculated using BSALS to describe solidification process. The results obtained from BSALS were in agreement with those obtained from SEM, which means BSALS was valid to study the phase morphology and evolution during solidification process of polymer blend. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

18.
Phase separation behavior and phase morphology of mixtures of methylene dianiline (MDA)‐cured diglycidyl ether of Bisphenol A (DGEBA) epoxy oligomer and 0–30 wt % of ethylene‐(vinyl acetate) copolymer (70% vinyl acetate content) were investigated by means of small angle light scattering (SALS), optical microscopy, and scanning electron microscopy (SEM). Epoxies with EVA modified were also characterized by tensile, flexural, thermal, and hardness properties. Epoxy/EVA blend compositions, during isothermal curing, showed a ring pattern of light scattering, an increase of intensity, and a shift of peak angle to smaller scattering angle, all of which are hallmarks of spinodal decomposition. Optical microscopy studies revealed a two‐phase structure with unique periodicity and phase connectivity. Physical property measurements indicated that there was no toughening achieved by EVA modification of epoxy, and this result was explained with morphological information obtained by SEM.  相似文献   

19.
The melt rheological behavior of high‐density polyethylene (HDPE)/ethylene vinyl acetate (EVA) blends has been examined with reference to the effect of blend ratio, shear stress, and temperature. The HDPE/EVA blends exhibit pseudoplastic behavior, and the observed rheological behavior of the blends was correlated with the extrudate morphology. The experimental values of the viscosity were compared with the theoretical models. The effect of maleic‐ and phenolic‐modified PE compatibilizers on the viscosity of H70 blend was analyzed and found that compatibilization did not significantly increase the viscosity. The effect of dynamic vulcanization and temperature on the viscosity was also analyzed. The activation energy of the system decreased with increase in EVA content in the system. The phase continuity and phase inversion points of the blends were theoretically predicted and compared with the experimental values. The melt flow index (MFI) values of the blends were also determined and found that the MFI values decreased with increase in EVA content in the system. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

20.
Amorphous boron powder granulated with HTPB, whose particle diameter could be controlled, was prepared by mechanical mill method. It was found that amorphous boron powder could be granulated with HTPB binder to form B‐HTPB particles, whose median particle diameter (d50) and specific surface area are in the range of 125.0–431.0 µm and 0.02–0.1 m2 g−1, respectively. The B‐HTPB particles could be dispersed in the HTPB binder with relatively low viscosity compared with direct addition of amorphous boron powder to the HTPB binder. The experimental results showed that the content of boron particles in a fuel‐rich propellant could be increased by addition of B‐HTPB particles and the combustion characteristics of the fuel‐rich solid propellant could be improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号