共查询到20条相似文献,搜索用时 10 毫秒
1.
The graft copolymer of N‐vinylformamide with alginic acid was synthesized by free radical polymerization using potassium peroxymonosulphate and thiourea as redox pair in inert atmosphere. The optimum conditions for maximum grafting have been determined by varying the concentrations of N‐vinylformamide, potassium peroxymonosulphate, thiourea, sulfuric acid, alginic acid as well as time duration and temperature. The grafting parameters increase up to the certain concentrations of N‐vinylformamide, potassium peroxymonosulhate, thiourea, and hydrogen ion while thereafter grafting parameters decrease. The effect of alginic acid concentration on grafting parameters has been observed to decrease continuously. It has also been found that grafting parameters increase up to certain time and temperature, respectively, and thereafter decrease. The swelling properties of graft copolymer in terms of swelling ratio and percent swelling are investigated. Flocculation property of pure and grafted sample for both coking and noncoking coals is also investigated for the treatment of coal mine waste water. The graft copolymer has been characterized by Fourier transform infrared spectroscopy as well as thermogravimetic analysis. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
2.
Nanocomposites with unique material properties have been prepared from synthetic plastics and nanosilicates (nanoclay) until now, but not from biopolymers such as starch. The primary challenge in making biopolymeric nanocomposites is to achieve strong adhesion between nanoclay and polymer matrix. For the first time nanocomposites with superior properties have been successfully made from starch‐polycaprolactone (PCL) blends in the presence of montmorillonite (MMT) nanoclay. Reactive extrusion results showed that addition of a modified nanoclay at 3 % wt level increased elongation almost fourfold over that of pristine starch–PCL blends. X‐ray diffractions results showed dispersion of clay in the polymer matrix. The nanocomposites have better solvent‐resistance properties because of resistance to diffusion offered by clay platelets in the polymer matrix. Copyright © 2004 Society of Chemical Industry 相似文献
3.
玉米淀粉接枝丙烯酰胺制备高吸水性树脂 总被引:4,自引:1,他引:4
用硝酸铈铵作引发剂,通过水溶液聚合法制得了玉米淀粉接枝丙烯酰胺高吸水性树脂。研究了交联剂及引发剂用量、碱用量、反应温度以及反应时间等对吸水率的影响。得到的最佳反应条件为:交联剂和引发剂与丙烯酰胺的摩尔比分别为1.0×10-5和3.0×10-3,碱与丙烯酰胺的摩尔比为1.50,反应温度60℃,反应时间2 h。在室温下制得的高吸水树脂,30 m in每克吸蒸馏水和自来水分别约为其自身质量的600和170倍。 相似文献
4.
We prepared submicron‐sized N‐isopropyl acrylamide (NIPA)–N‐cyanomethyl acrylamide (NCMA) copolymer gel particles by precipitation polymerization. Volume phase transition behaviors of gel particles with various compositions and crosslinking density were observed by using photon correlation spectroscopy (PCS). The experimental data showed that both the volume transition temperature and the swelling ratio of copolymer gel particles were varied with the mole ratio of NCMA and NIPA. We compared the swelling behaviors of given systems with the thermodynamic model based on the extended Flory–Huggins theory. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1091–1099, 1999 相似文献
5.
6.
Kazuya Yamamoto Yachiyo Imamura Emi Nagatomo Takeshi Serizawa Yoichiro Muraoka Mitsuru Akashi 《应用聚合物科学杂志》2003,89(5):1277-1283
The molecular weights of poly(N‐vinylformamide) [poly(NVF)] obtained by free‐radical polymerization were expanded from being in the range of thousands to hundreds of thousands. Primary amino groups were introduced by the hydrolysis of poly(NVF) under both acidic and basic conditions. After 2 h polyvinylamine [poly(VAm)] was given at 60°C under a 2N NaOH solution. The apparent activation energy of poly(NVF) hydrolysis was 61.8 kJ/mol. Furthermore, alkyl side chains were partly introduced by a polymer modification reaction in poly(VAm) with carboxylic acid, using WSC (water‐soluble carbodiimide) as the activating agent to produce the stimuli‐responsive poly(VAm) derivative. The effects of external stimuli such as temperature and pH on the phase‐transition behavior of the copolymers were then studied. The lower critical solution temperature at pH 12 decreased depending on the alkyl group content. The phase‐transition behavior of the resulting polymers was also found to vary depending on the side‐chain length of the alkyl groups. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1277–1283, 2003 相似文献
7.
Block copolymers of very hydrophilic poly(N‐hydroxyethyl acrylamide) (PHEAA) with polystyrene (PS) were successfully synthesized by sequential atom transfer radical polymerization of ethyl acrylate (EA) and styrene monomers and subsequent aminolysis of the acrylic block with ethanolamine. Quantitative aminolysis of poly(ethyl acrylate) (PEA) block yielded poly(N‐hydroxyethyl acrylamide)‐b‐polystyrene in well‐defined structures, as evidenced by Fourier transform infrared spectroscopy (FTIR) and 1H‐NMR spectroscopy techniques. Three copolymers with constant chain length of PHEAA (degree of polymerization: 80) and PS blocks with 21, 74, and 121 repeating units were prepared by this method. Among those, the block copolymer with 21 styrene repeating units showed excellent micellation behavior in water without phase inversion below 100°C, as inferred from dynamical light scattering, environmental scanning electron microscopy, and fluorescence measurements. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
8.
Partially aminated poly‐N‐vinylformamides (APNVF) were prepared by the hydrolysis of PNVF and used as the retention aid of rosin size. The dual retention aids system, consisting of this modern polymer and aluminum sulfate (alum) for neutral‐alkaline paper sizing using acid rosin sizes, was evaluated by experiment. The results indicated that APNVF was very effective and a small amount of the polymer used together with alum considerably increased the size retention and sizing degree of paper under neutral‐alkaline conditions. The cationic charge density of APNVF significantly influenced the sizing efficiency of the rosin sizes. Furthermore, the retention of alkaline filler CaCO3 and paper strength were improved by the polymer addition. It is clear that the polymer can be used as a multifunctional additive for papermaking. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1805–1810, 2000 相似文献
9.
Poly(N‐vinylformamide) (PNVF) was synthesized and hydrolyzed to poly(vinylamine) (PVAm) in both HCl and NaOH solutions. The hydrolysis kinetics and the equilibrium hydrolysis were examined experimentally at different temperatures, polymer concentrations, and acid‐ or base‐to‐amide molar ratios. The hydrolysis kinetics strongly depended on temperature, polymer, and HCl or NaOH concentrations, but showed little dependence on PNVF molecular weight. The acid hydrolysis of PNVF exhibited limited conversions because of the electrostatic repulsion among the cationic amine groups generated during hydrolysis and proton hydrates. In the basic hydrolysis, complete amide conversions were observed when the NaOH/amide molar ratios were greater than unity. The effects of temperature and PNVF concentration on the equilibrium amide conversion appeared to be negligible in both acidic and basic hydrolysis. The equilibrium conversions of base hydrolysis were higher than those of acidic hydrolysis under the same reaction conditions. At NaOH/amide ratios of less than unity, the equilibrium hydrolysis experiments revealed that one base molecule could induce the hydrolysis of more than one amide group. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3412–3419, 2002 相似文献
10.
Polydimethylsiloxane macromonomer bearing N‐vinylcaprolactam as end group: thermosensitive graft copolymers via free radical polymerization 下载免费PDF全文
A polydimethylsiloxane macromonomer was synthesized via anionic ring‐opening polymerization of hexamethylcyclotrisiloxane using N‐vinylcaprolactam anion as initiator and trimethylsilyl chloride as terminating agent. The polydimethylsiloxane macromonomer was copolymerized with N‐vinylcaprolactam in different molar ratios via a free radical mechanism. The new class of graft copolymers thus obtained shows cloud points in water because of an excess of N‐vinylcaprolactam units in the polymer chain. These cloud points can be shifted using randomly methylated β‐cyclodextrin as complexing agent. © 2015 Society of Chemical Industry 相似文献
11.
The physical properties of poly(vinyl chloride) (PVC) and poly(N‐isopropylacrylamide) [poly(NIPAAm)] blend systems, and their corresponding graft copolymers such as PVC‐g‐NIPAAm, were investigated in this work. The compatible range for PVC–poly(NIPAAm) blend systems is less than 15 wt % poly(NIPAAm). The water absorbencies for the grafted films increase with increase in graft percentage. The water absorbencies for the blend systems increase with increase in poly(NIPAAm) content within the compatible range for the blends, but the absorbencies decrease when the amount of poly(NIPAAm) is more than the compatible range in the blend system. The tensile strengths for the graft copolymers are larger than the corresponding blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 170–178, 2000 相似文献
12.
Starch‐g‐polycaprolactone copolymers were prepared by two‐step reactions. The diisocyanate‐terminated polycaprolactone (NCO–PCL) was prepared by introducing NCO on both hydroxyl ends of PCL using diisocyanates (DI) at a molar ratio between PCL and DI of 2:3. Then, the NCO–PCL was grafted onto corn starch at a weight ratio between starch and NCO–PCL of 2:1. The chemical structure of NCO–PCL and the starch‐g‐PCL copolymers were confirmed by using FTIR and 13C‐NMR spectrometers, and then the thermal characteristics of the copolymers were investigated by DSC and TGA. By introducing NCO to PCL (Mn : 1250), the melting temperature (Tm ) was reduced from 58 to 45°C. In addition, by grafting the NCO–PCL (35–38%) prepared with 2,4‐tolylene diisocyanate (TDI) or 4,4‐diphenylmethane diisocyanate (MDI) onto starch, the glass transition temperatures (Tg 's) of the copolymers were both 238°C. With hexamethylene diisocyanate (HDI), however, Tg was found to be 195°C. The initial thermal degradation temperature of the starch‐g‐PCL copolymers were higher than that of unreacted starch (320 versus 290°C) when MDI was used, whereas the copolymers prepared with TDI or HDI underwent little change. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 986–993, 2000 相似文献
13.
Poly(N‐isopropylacrylamide‐co‐hydroxyethyl methacrylate) [P(NIPAM‐co‐HEMA)] copolymer was synthesized by controlled radical polymerization from respective N‐isopropylacrylamide (NIPAM) and hydroxyethyl methacrylate (HEMA) monomers with a predetermined ratio. To prepare the thermosensitive and biodegradable nanoparticles, new thermosensitive graft copolymer, poly(L ‐lactide)‐graft‐poly(N‐isoporylacrylamide‐co‐hydroxyethyl methacrylate) [PLLA‐g‐P(NIPAM‐co‐HEMA)], with the lower critical solution temperature (LCST) near the normal body temperature, was synthesized by ring opening polymerization of L ‐lactide in the presence of P(NIPAM‐co‐HEMA). The amphiphilic property of the graft copolymers was formed by the grafting of the PLLA hydrophobic chains onto the PNIPAM based hydrophilic backbone. Therefore, the graft copolymers can self‐assemble into uniformly spherical micelles ò about 150–240 nm in diameter as observed by the field emission scanning electron microscope and dynamic light scattering. Dexamethasone can be loaded into these nanostructures during dialysis with a relative high loading capacity and its in vitro release depends on temperature. Above the LCST, most of the drugs were released from the drug‐loaded micelles, whereas a large amount of drugs still remains in the micelles after 48 h below the LCST. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
14.
15.
The polypropylene‐graft‐cardanol was prepared by reactive extrusion, which is solvent‐free melt process, continuous processing, and controllable over residence time. The effect of monomer and initiator concentration on grafting ratio, grafting efficiency, and melt flow index (MFI) was also studied. The yield was quantified by UV–vis spectrometer. The chemical structure was investigated by infrared spectroscopy and gel ratio. A possible mechanism was supposed. The particular structure of cardanol can retain the MFI value of matrix resins and prevent polypropylene (PP) from being decomposed. The grafting ratio could be easily obtained from an experimental formula deduced from the linearity relationship between grafting ratio and MFI. The effect of cardanol grafted onto PP on the compatibility of PP and bamboo powder was studied by contact angle measurements, scanning electron microscopy, and tensile properties test. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
16.
A convenient method of preparing chelating fiber with amine groups on the fiber surface was developed. The precursor polymer of Poly(N‐vinylformamide/acrylonitrile) (P(NVF/AN)) was synthesized via solution polymerization, using N‐vinylforaimde as a functional monomer. The solution of P(NVF/AN) was spun through a wet spinning method and the precursor fiber was hydrolyzed in the hydrochloric acid solution to convert formamide moieties to the corresponding amine. The influence of hydrolytic conditions on hydrolysis degree, such as hydrolysis temperature, hydrolysis time, and hydrochloric acid concentrations were examined experimentally. The hydrolysis degree of the precursor fiber was evaluated by potentiometric and conductometric titrations. The changes of the structure and properties of the fibers were characterized through infrared spectroscopy, scanning electron microscopy, and tensile strength tester. The results showed that the hydrolysis degree was limited in acidic hydrolysis because of the electrostatic repulsion among the cationic amine groups and proton. The hydrolysis degree of precursor fiber reached nearly 60%, and the chelating fiber remained the adequate mechanical properties under the suitable hydrolysis condition. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
17.
The synthesis, characterization, and thermal properties of copolymers of methyl methacrylate (MMA) and N‐(p‐carboxyphenyl) methacrylamide/acrylamide (CPMA/CPA) are described. The copolymerization was carried out in solution by taking different mole fractions (0.1–0.5) of CPMA/CPA in the initial feed using azobisisobutyronitrile as an initiator and dimethylformamide as a solvent at 60°C. The copolymer composition was determined from 1H‐NMR spectra by taking the ratio of the proton resonance signal due to the OCH3 of MMA (δ = 3.59 ppm) and the aromatic protons (δ = 7.6–7.8 ppm) of CPMA/CPA. The monomer reactivity ratios of MMA:CPMA and MMA:CPA were determined using the Fineman Ross and Kelen Tudos methods and were found to be 1.32 ± 0.01 [MMA], 1.11 ± 0.02 [CPMA], 2.60 ± 0.01 [MMA], and 0.20 ± 0.01 [CPA]. Incorporation of these comonomers in the MMA backbone resulted in an improvement in the glass‐transition temperature and thermal stability. The percent char also increased with the increase of CPMA/CPA content in the copolymers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 259–267, 2000 相似文献
18.
A series of acrylic monomers–starch graft copolymers were prepared by ceric ion initiation method by varying the amount of monomers. These graft copolymers were characterized by IR and 13C‐NMR spectroscopy. It was seen that as the concentration of monomer [acrylic acid (AA), methacrylic acid (MA), and methyl methacrylate (MMA)] increased the percent add‐on increased in all the graft copolymers, whereas grafting efficiency increased initially but showed a slight decrease with further increase in the monomer concentration (except for MMA). The release rate of paracetamol as a model drug from graft copolymers as well as their blends was studied at two different pH, 1.2 and 7.4, spectrophotometrically. The release of paracetamol in phosphate buffer solution at pH 1.2 was insignificant in the first 3 h for St‐g‐PAA‐ and St‐g‐PMA‐graft copolymers, which was attributed to the matrix compaction and stabilization through hydrogen bonding at lower pH. At pH 7.4, the release rate was seen to decrease with increase in add‐on. The tablet containing poly(methyl methacrylate) (PMMA) did not disintegrate at the end of 30–32 h, which may be attributed to the hydrophobic nature of PMMA. These results indicate that the graft copolymers may be useful to overcome the harsh environment of the stomach and can be used as excipients in colon‐targeting matrices. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
19.
Thermo‐ and pH‐sensitive polymers were prepared by graft polymerization or blending of chitosan and poly(N‐isopropylacrylamide) (PNIPAAm). The graft copolymer and blend were characterized by Fourier transform‐infrared, thermogravimetric analysis, X‐ray diffraction measurements, and solubility test. The maximum grafting (%) of chitosan‐g‐(N‐isopropylacrylamide) (NIPAAm) was obtained at the 0.5 M NIPAAm monomer concentration, 2 × 10−3 M of ceric ammonium nitrate initiator and 2 h of reaction time at 25°C. The percentage of grafting (%) and the efficiency of grafting (%) gradually increased with the concentration of NIPAAm up to 0.5 M, and then decreased at above 0.5 M NIPAAm concentration due to the increase in the homopolymerization of NIPAAm. Both crosslinked chitosan‐g‐NIPAAm and chitosan/PNIPAAm blend reached an equilibrium state within 30 min. The equilibrium water content of all IPN samples dropped sharply at pH > 6 and temperature > 30°C. In the buffer solutions of various pH and temperature, the chitosan/PNIPAAm blend IPN has a somewhat higher swelling than that of the chitosan‐g‐NIPAAm IPN. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1381–1391, 2000 相似文献
20.
Polymerization of N‐ethylcarbazole (NECz) in the presence of acrylamide (AAm) has been investigated by in situ and ex situ UV–visible spectrophotometric measurements to obtain information about the reaction pathway, because NECz gives soluble oligomeric species allowing such measurements. A tentative mechanism is proposed in the light of these results. The redox properties of the new polymers have been studied for possible sensor application. © 2001 Society of Chemical Industry 相似文献