首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phenolic foam exhibits outstanding flame, smoke and toxicity properties, good insulation properties and low production costs. However, the brittleness and pulverization of phenolic foam have severely limited its application in many fields. In this study, a novel phosphorus‐containing polyurethane prepolymer (DOPU) modifier was firstly synthesized, and then the foaming formula and processing of toughening phenolic foam modified with DOPU and glass fiber were explored. The structure and reactive behavior of prepolymer and phenolic resin were investigated using Fourier transform infrared spectroscopy. The effects of DOPU and glass fiber on the apparent density, compressive strength, bending strength and water absorption were investigated. The results suggested that the apparent density, compressive strength and bending strength of modified phenolic foam tended to increase irregularly with increasing content of DOPU. The addition of DOPU led to lower water absorption of glass fiber‐filled foam. Thermal stability and flame retardancy were examined using thermogravimetric analysis and limiting oxygen index (LOI) tests. It was found that foam with 3% DOPU and 0.5% glass fiber added exhibited good thermal stability and high char yields. The LOI value of modified phenolic foams decreased with increasing DOPU content, but it still remained at 41.0% even if the amount of modifier loaded was 10 wt%. © 2012 Society of Chemical Industry  相似文献   

2.
Two kinds of novel phosphorus-containing polyether toughening agents were synthesized and characterized by 1H nuclear magnetic resonance (1H NMR) and Fourier transform infrared spectra (FTIR). Afterwards, a series of phenolic foams with different loadings of phosphorus-containing toughening agents were prepared. The apparent density and scanning electron microscopy (SEM) results showed that the addition of 5 wt% toughening agents increased the expansion ratio and promoted the formation of uniform cells. The limiting oxygen index (LOI) values of modified phenolic foams decreased with the increase of modifier content, but it still remained at 40% even if the amount of modifier loadings was 10 wt%. UL-94 results showed all samples can pass V0 rating, indicating the modified foams still have great flame retardance. Microscale combustion calorimetry (MCC) results indicated that the peak heat release rate (PHRR) and total heat release (THR) of the modified foams were reduced by 42% and 35%, respectively, compared to the pure phenolic foams. Moreover, the thermal stability of samples was investigated by thermogravimetric analysis (TGA). The mechanical properties were evaluated and correlated with composition and structural features.  相似文献   

3.
In this article, phenolic nanocomposites were prepared using styrene–butadiene rubber (SBR) nanoparticles with an average particle size of about 60 nm as the toughening agent. The mechanical and thermal properties of phenolic nanocomposites and the toughening mechanism were studied thoroughly. The results showed that when adding 2.5 wt % SBR nanoparticles, the notched impact strength of phenolic nanocomposites reached the maximum value and was increased by 52%, without sacrificing the flexural performance. Meanwhile, SBR nanoparticles had no significant effect on the thermal decomposition temperature of phenolic nanocomposites. The glass‐transition temperature (Tg) of phenolic nanocomposites shifted to a lower temperature accompanying with the increasing Tg of loaded SBR, which showed there was a certain compatibility between SBR nanoparticles and phenol‐formaldehyde resin (PF). Furthermore, the analysis of Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy indicated that there existed a weak chemical interaction between SBR nanoparticles and the PF matrix. The certain compatibility and weak chemical interaction promoted the formation of a transition layer and improved the interfacial bonding, which might be important reasons for the great enhancement of the toughness for phenolic nanocomposites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41533.  相似文献   

4.
A melamine phosphate borate flame retardant was prepared through a solvothermal method and characterized by Fourier transform infrared spectroscopy, scanning electron microscope, element analysis, and X-ray photoelectron spectroscopy. The incorporation of melamine phosphate borate into the phenolic foams toughened by polyethylene glycol results in an increase in limiting oxygen index and a decrease in peak heat release rate, smoke, and CO and CO2 production. The mechanical tests reveal that the incorporation of melamine phosphate borate leads to a further improvement in flexural strength and compressive strength, and a decrease in the pulverization ratios of the toughened foams. Moreover, the thermal stability of the toughened PF foams containing melamine phosphate borate was studied.  相似文献   

5.
A new type of crosslinked poly (n‐butyl acrylate) (PBA)/silica core‐shell nanocomposite particles was adopted as toughening agent to improve the mechanical properties of phenolic foams. The effects of the nanocomposite particles on the structures and properties of lightweight phenolic foams were investigated. SEM result showed that the addition of a small quantity of the nanocomposite particles can significantly enhance the structural homogeneity of phenolic foams. Thermalgravimetric analysis result suggested that the incorporation of the nanocomposite particles did not affect the thermal stability of the toughened phenolic foams. The flexural strength, compressive strength, and elastic modulus of the phenolic foams increased distinctively after the addition of the nanocomposite particles, the maximum values of which increased by 36.0%, 42.9%, and 32.3%, respectively. In this study, the optimum dosage of the nanocomposite particles is 0.03 phr in the modified phenolic foams. Moreover, the influence on the flammability of phenolic foams by toughening can almost be neglected. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42590.  相似文献   

6.
A novel phosphorus‐ and nitrogen‐containing polyurethane quasi‐prepolymer (PNPUQP) was synthesized and incorporated into phenolic foam (PF) in different ratios in order to improve the toughness. The structure of PNPUQP was confirmed by Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR). The effects of PNPUQP on the flame retardant properties, thermal stability and mechanical properties of modified PF were investigated. The results suggested that the addition of 3 wt % PNPUQP increased the toughness of PF and improved the flame retardancy. The investigation on the morphology of PF and modified PF by scanning electron microscope (SEM) certified the good toughness of the PNPUQP on PF. Additionally, the thermal properties of the foams were investigated by thermogravimetric analysis (TGA) under N2 atmosphere. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42424.  相似文献   

7.
Nano carboxylic acrylonitrile butadiene rubber latex‐toughened‐phenolic resins (XNBRL‐PF) were prepared by in situ polymerization in this work. The influence of nano XNBRL on the microstructure and physical properties of modified PF resin was investigated. Impact test testified that the impact strength of XNBRL‐PF was remarkably improved compared to pure PF and as the content of XNBRL increased to 10 wt %, the impact strength of the XNBRL‐PF kept increasing. Scanning electron microscope analysis of the fracture surface of the XNBRL‐PF indicated that the XNBRL were uniformly dispersed in the PF matrix, with diameters ranging from 200 to 400 nm. The results of Fourier transform infrared spectroscopy proved that chemical reaction occurred between XNBRL and PF matrix, which can greatly improve the interface interaction between rubber particles and PF matrix. Thermogravimetric analysis test showed that the incorporation of XNBRL can improve the thermostability of PF at low temperatures. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Polyurethane consumption has been increasing in recent years, raising concerns about how to deal with the polymer waste. Post‐consumer rigid polyurethane foams or polyurethane foam scraps (PPU) ground into particles were utilized to strengthen mechanical properties of rigid polyurethane foam (PUF) and phenolic foam (PF). Viscosity of prepolymer with PUF was measured and PPU was well dispersed in prepolymer, as observed by optical microscope. Microstructures and morphologies of the reinforced foam were examined with scanning electron microscope (SEM) while cell diameter and density were measured by Scion Image software. Universal testing machine was employed to optimize compressive properties at various weight ratios of PPU. Both PUF and PF with 5 wt % PPU, respectively, exhibited considerable improvement in mechanical properties especially compressive property. The compressive modulus of PUF with 5 wt % PPU was 12.07 MPa, almost 20% higher than pure PUF while compressive strength of PF with 5 wt % PPU reached 0.48 MPa. The thermal stability of the reinforced foam was tested by thermal gravity analysis (TGA) and the result shows no obvious impact with PPU. The decomposition temperatures of PUF with PPU and PF with PPU were 280°C, because PPU has relatively weak thermal stability. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39734.  相似文献   

9.
In this study, glass bubble (GB) is added to polyurethane (PU) foams at different weight ratios—0, 0.25, 0.5, 0.75, and 1 wt% —to investigate the changes in the mechanical and thermal properties of the foam. By conducting several tests and measurements, the density, cell morphology, compressive strength, and thermal conductivity of the foam are studied. In particular, the effect of GB additives is examined by conducting compression tests at various temperatures (−163, −100, −40, and 20°C). Scanning electron microscopy and X-ray microscope reveal that the foams exhibit higher stability below 0.5 wt%, which improves the thermal performance. On the other hand, the compressive strength of the foams increases for all weight ratios of GB, and it increases sharply at 0.75 wt%. In addition, the chemical interactions and the dispersion of additives in the PU matrix are investigated through Fourier transform infrared and X-ray diffractions analysis. It is found that the synthesis of PU foams with GB nanoparticles is an efficient method for improving the mechanical properties and insulation performance of the foam for LNG insulation technology.  相似文献   

10.
环氧及酚醛树脂增韧改性氰酸酯树脂研究   总被引:6,自引:0,他引:6  
用环氧树脂(EP)及酚醛树脂(PF)对氰酸酯树脂(CE)进行增韧改性,对改性CE的凝胶时间和DSC曲线进行研究并确定了改性CE的固化工艺。红外光谱分析表明改性CE固化时形成了柔韧性结构。研究了改性CE的力学性能、热性能、电性能及微观形态,发现EP的加入可增加CE的柔韧性,PF的加入可使CE的热稳定性损失减小。当CE/EP/PF的质量比为70/15/15时改性CE的弯曲强度和冲击强度分别从改性前的123.6 MPa、5.2 kJ/m2提高到134.5 MPa、16.7 kJ/m2,耐热性及电性能改变不大。  相似文献   

11.
研究出一种具有较好稳定性、保温性能、力学性能和阻燃性能的酚醛树脂(PF)/可发性聚苯乙烯(EPS)复合泡沫塑料。在PF泡沫塑料颗粒基体中加入EPS发泡颗粒,充分混合固化,使PF泡沫塑料颗粒与EPS发泡颗粒紧密结合,EPS发泡颗粒被PF泡沫塑料颗粒包围并相互隔离,再用模具发泡成型得到该复合泡沫塑料。实验结果表明,PF的含量越高,稳定性、力学性能和阻燃性能越好,保温性能呈现先升高后下降的趋势,当PF的含量为80%时,PF/EPS复合泡沫塑料的表观密度为38.4 kg/m3,热导率为0.024 W/(m·K),弯曲强度为0.134 k Pa,压缩强度为323 k Pa,极限氧指数为47.9%,烟密度等级小于15,热释放速率峰值小于250 k W/m2,综合性能最好。  相似文献   

12.
A series of epoxy resin–modified polyisocyanurate (EP‐PIR) foams with oxazolidone (OX) rings and isocyanurate (IS) rings have been successfully prepared by the reaction of polymethylene polyphenyl isocyanate (PAPI) and diglycidyl ether of bisphenol‐A (DGEBA). Fourier transform infrared spectroscopy and differential scanning calorimetry are performed to investigate the influence of curing temperature on the chemical structure of EP‐PIR foams. The results indicate that low temperature is beneficial to the formation of the IS ring, and high temperature is in favor of the OX ring. The influence of the mole ratio of [PAPI]/[DGEBA] on the mechanical properties and thermal stability has also been studied. With the increase of [PAPI]/[DGEBA], the specific compressive strength shows a maximum of 0.0135 ± 0.0003 MPa m3/kg. The optimized mole ratio of [PAPI]/[DGEBA] is around 2.5 to reach the better mechanical and thermal properties, and the glass‐transition temperature is as high as 323.5°C. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43085.  相似文献   

13.
Oil sorption (g g?1) through different polyurethane foams has been investigated in this study. Polyurethane foams were synthesized with different additives: glycerol, propylene glycol, polyethylene glycol 400, and 1‐dodecanol. All foams were applied as sorbents of diesel, motor oil, gasoline, kerosene, and crude oil. The foams were characterized using Fourier transform infrared spectroscopy, thermogravimetry and differential scanning calorimetry, compressive resistance at 10% deformation and the elastic modulus, scanning electron microscopy, and apparent density. The best performance of oil sorption was achieved with PUF‐3, which has the greatest amount of the chain extender polyethylene glycol 400 and lowest density of all the evaluated foams. The sorption capacities (g g?1) of PUF‐3 were 16.8 (diesel), 15.7 (gasoline), 20.7 (oil motor), 25.4 (kerosene), and 29.8 (crude oil) and 100% removal of diesel from water was achieved, approximately. The foams with chain extenders and lower density values performed better as oil sorbents. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45409.  相似文献   

14.
液体NBR增韧酚醛泡沫研究   总被引:1,自引:0,他引:1  
研究了液体丁腈橡胶(LNBR)对酚醛泡沫的增韧效果.通过红外光谱、万能试验机、热重分析仪等测试手段对改性后酚醛泡沫特征官能团的存在、力学性能、耐热性能分别进行表征分析.实验结果表明:共聚物存在LN-BR与PF(酚醛树脂) 的结构单元;当改性剂用量为0.6份(占树脂总质量)时,泡沫塑料的压缩强度由原来的0.105 MPa提高到0.336 MPa,证明LNBR对PF泡沫有显著的增韧作用;泡沫在802 ℃时失重44%,说明泡沫经改性后具有良好的耐热性能且未影响其热稳定性.  相似文献   

15.
引入不同质量分数的端羟基聚二甲基硅氧烷(PDMS–OH)对酚醛(PF)泡沫进行共混改性。从两相聚合物相容的角度,分析PDMS–OH对PF泡沫压缩及热学性能的影响。通过宏观沉淀实验,分析发泡用PF/PDMS–OH共混体系的相容性及稳定性。采用动态热力学分析仪表征改性的PF树脂样条的玻璃化转变温度,分析PDMS–OH与PF的相容效果。通过压缩性能测试分析PDMS–OH对PF泡沫压缩性能的影响及机理。通过热失重分析仪分析PF泡沫复合材料的热稳定性。结果显示,加入15%的PDMS–OH在一定程度上增加了体系的交联密度,相容效果最佳,压缩强度和压缩弹性模量分别提高了280%和285%,表现出最优的热稳定性。  相似文献   

16.
Two kinds of nano-metallic oxides (nano-Al2O3 and nano-ZrO2) were introduced separately into phenolic (PF) foams, and a series of PF foams modified with different loadings of the two nano-oxides were prepared. The test results of mechanical properties indicated that the flexural, compressive and impact strengths of the PF foams, modified by nano-Al2O3 at 5 phr loading, increased by 33, 46 and 51 % in the above order, and the strengths of the PF foams modified by nano-ZrO2 at 5 phr loading increased by 31, 30 and 49 % in the same order, compared to the corresponding data of pure PF foam. The pulverization ratio of the modified PF foams decreased gradually with the increase in nano-oxides contents. The pulverization ratio of the PF foam modified by nano-oxides at 5 phr, decreased to 2.3 % for Al2O3 and that of ZrO2 decreased to 2.2 %, which were quite lower than the pure PF foam value of 8 %. The combustion characteristics of the PF foams, modified by the nano-oxides, were evaluated by the limiting oxygen index (LOI), UL-94 and cone calorimetry tests. The LOI values of the foams modified by both nano-Al2O3 and nano-ZrO2 decreased slightly with an increase in the loading of the nano-oxides, still all above 36 %. The UL 94 test results indicated that all foams could pass a V0 rating. The cone calorimeter results showed that the peak heat release rates of the modified foams were lower than 50 kW/m2. Moreover, thermal stability of the foams modified by the nano-oxides was investigated.  相似文献   

17.
利用低廉的木质素部分取代苯酚制备木质素基酚醛树脂(PF)泡沫,采用正交试验对木质素基PF发泡工艺进行了研究,研究了表面活性剂(吐温–80)用量、发泡剂(正戊烷)用量、发泡温度三个因素对木质素基PF泡沫性能的影响,从而优化发泡工艺。实验结果表明,对木质素基PF泡沫的极限氧指数(LOI)和导热系数影响最大的是发泡温度,而对于压缩强度影响最大的是表面活性剂用量。木质素基PF泡沫的最佳发泡工艺为:表面活性剂(吐温–80)用量为8%、发泡剂(正戊烷)用量为12%,发泡温度为90℃,所得泡沫具有较好的热稳定性,其LOI为39%,压缩强度为0.32 MPa,导热系数为0.025 W/(m·K)。  相似文献   

18.
In this study, a novel approach to toughen biobased epoxy polymer with different types of siloxanes was explored. Three different modified siloxanes, e.g., amine‐terminated polydimethyl siloxane (PDMS‐amine), glycidyl‐terminated polydimethyl siloxane (PDMS‐glycidyl), and glycidyl‐terminated polyhedral oligomeric silsesquioxane (POSS‐glycidyl) were used as toughening agents. The curing and kinetics of bioepoxy was investigated by differential scanning calorimetry and Fourier transform infrared spectroscopy. The mechanical, thermal, and morphological properties of the cured materials were investigated. Rheological characterization revealed that the inclusion of POSS‐glycidyl slightly increased the complex viscosity compared to the neat resin. The morphology of the cured bioresin was characterized by transmission electron microscopy and scanning electron microscopy. The inclusion of POSS‐glycidyl to bioepoxy resin resulted in a good homogeneity within the blends. The inclusion of PDMS‐amine or PDMS‐glycidyl was shown to have no effect on tensile and flexural properties of the bioresins, but led to a deterioration in the impact strength. However, the inclusion of POSS‐glycidyl enhanced the impact strength and elongation at break of the bioresins. Dynamic mechanical analysis showed that the siloxane modified epoxy decreased the storage modulus of the bioresins. The thermal properties, such as decomposition temperature, coefficient of linear thermal expansion, and heat deflection temperature were improved by inclusion of POSS‐glycidyl. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42451.  相似文献   

19.
A series of polyimide (PI)/organoclay nanocomposite foams containing different contents of organoclay were prepared by the monomer in situ intercalative polymerization. The effect of organoclay on the chemical structure, morphology, mechanical, and thermal properties of the nanocomposite foams was studied. Fourier transform infrared spectra showed that the hydrogen bonds between organoclay and the polymer matrix were formed. X‐ray diffraction and transmission electron microscope results indicated that the organoclay were well dispersed in the PI matrix. The compressive strength and tensile strength of the nanocomposite foams enhanced significantly, especially for the nanocomposite foam containing 4 wt% organoclay, increasing by 15% and 9%, respectively, compared with these of the neat PI foam, and the presence of the organoclay in the PI foam improved apparently the cellular structure of the nanocomposite foams. Besides, thermogravimetric analysis revealed that the addition of organoclay improved the thermal stability of the nanocomposite foams strongly, and dynamic mechanical analysis indicated that the incorporation of organoclay significantly influenced the storage modulus of the nanocomposite foams. POLYM. COMPOS., 35:2311–2317, 2014. © 2014 Society of Plastics Engineers  相似文献   

20.
A high‐performance polymethacrylimide (PMI) foam was prepared from the reactive monomers of acrylonitrile (AN) and methacrylic acid (MAA) via ultrasonic combined with thermal initiation radical bulk copolymerization and free heat foaming. The reaction progress of cyano and carboxyl groups were tracked by Fourier transform infrared (FTIR) spectroscopy and X‐ray Photoelectron Spectroscopy, and the results indicated that the imide groups were formed and cyano groups gradually decreased during foaming and thermal treatment. The cell morphologies of the PMI foams were characterized by scanning electron microscopy, and the results showed the PMI foams were consisted of the honeycomb structure. The thermostability of the prepared PMI foam was evaluated by thermogravimetric analysis (TGA), and the results revealed that the PMI foam possessed excellent thermal stability and char forming capability. The mechanical properties of PMI foams were measured by tensile, flexural, and compressive strength, and the responding values for the PMI foams with the density of 32.30 kg m?3 were 0.71, 0.86, and 1.49 MPa, respectively, which demonstrated the obtained PMI foams presented superior mechanical properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44959.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号