共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of the incorporation of single‐walled carbon nanotubes (SWNTs) onto a diglycidyl ether of bisphenol A‐based (DGEBA) epoxy resin cure reaction was investigated by thermal analysis and Raman spectroscopy. The results of the investigation show that SWNTs act as a strong catalyst. A shift of the exothermic reaction peak to lower temperatures is, in fact, observed in the presence of SWNTs. Moreover, these effects are already noticeable at the lowest SWNT content investigated (5%) with slight further effects at higher concentrations, suggesting a saturation of the catalyzing action at the higher concentrations studied. The curves obtained under isothermal conditions confirm the results obtained in nonisothermal tests showing that the cure reaction takes less time with respect to the neat epoxy. The thermal degradation of cured DGEBA and DGEBA/SWNT composites was examined by thermogravimetry, showing a faster thermal degradation for DGEBA–SWNT composites. Raman spectroscopy was successfully applied to demonstrate that the observed changes in the cure reaction of the composites lead to a different residual strain on the SWNT bundles following a different intercalation of the epoxy matrix. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 452–458, 2003 相似文献
2.
Ivan Brnardic Marica Ivankovic Hrvoje Ivankovic Helena Jasna Mencer 《应用聚合物科学杂志》2006,100(3):1765-1771
The effect of an octadecylammonium‐exchanged montmorillonite on the curing kinetics of a thermoset system based on a bisphenol A epoxy resin and a poly(oxypropylene)diamine curing agent were studied with differential scanning calorimetry (DSC) in isothermal and dynamic (constant‐heating‐rate) conditions. Montmorillonite and the prepared composites were characterized by X‐ray diffraction analysis and simultaneous DSC and thermogravimetric analysis. The analysis of the DSC data indicated that the intercalated octadecylammonium cations catalyzed the epoxy–amine polymerization. A kinetic model, arising from an autocatalyzed reaction mechanism, was applied to the DSC data. Fairly good agreement between the experimental data and the modeling data was obtained. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1765–1771, 2006 相似文献
3.
Poly(Lactic acid) (PLA)‐layered silicate nanocomposite films were prepared by solvent casting method. The films were irradiated with Co60 radiation facility at dose of 30 kGy. The effect of γ irradiation on mechanical properties of the neat PLA and nanocomposites was evaluated by data obtained from tensile testing measurements. The tensile strength of the irradiated PLA films increased with addition of 1 wt % triallyl cyanurate indicating crosslink formation. Significant ductile behavior was observed in the PLA nanocomposites containing 4 pph of nanoclay. Incorporation of nanoclay particles in the PLA matrix stimulated crystal growth as it was studied by differential scanning calorimetry. The morphology of the nanocomposites characterized by transmission electron microscopy and X‐ray diffraction revealed an exfoliated morphology in the PLA nanocomposite films containing 4 pph of nanoclay. Only very small changes were observed in the chemical structure of the irradiated samples as it was investigated by Fourier transform infrared spectroscopy. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
4.
The cure kinetics and mechanisms of an epoxy oligomer based on diglycidyl ether of bisphenol A (DGEBA), polymerized with a liquid aromatic diamine based on diethyl toluene diamine (DETDA 80), and its blends with poly(ether imide) (PEI) at concentrations of 0–15 wt % were studied with differential scanning calorimetry under dynamic and isothermal conditions. The kinetic analyses were performed with a phenomenological approach. The reaction mechanism of the blends remained the same as that of the neat epoxy. However, the addition of PEI had a marked effect on the cure kinetics in the DGEBA/DETDA 80 system. The rate of reaction decreased with an increase in the thermoplastic content. Diffusion control was incorporated to describe the cure behavior of the blends in the latter stages. Greater diffusion control was observed as the PEI concentration increased and the cure temperature decreased. Polymer blends based on this epoxy/liquid aromatic diamine had not been previously studied from a kinetic viewpoint. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 660–672, 2005 相似文献
5.
Poly(ethylene oxide) (PEO) based nanocomposites were prepared by the dispersion of multiwall carbon nanotubes (MWCNTs) in aqueous solution. MWCNTs were added up to 4 wt % of the PEO matrix. The dynamic viscoelastic behavior of the PEO/MWCNT nanocomposites was assessed with a strain‐controlled parallel‐plate rheometer. Prominent increases in the shear viscosity and storage modulus of the nanocomposites were found with increasing MWCNT content. Dynamic and isothermal differential scanning calorimetry studies indicated a significant decrease in the crystallization temperature as a result of the incorporation of MWCNTs; these composites can find applications as crystallizable switching components for shape‐memory polymer systems with adjustable switching temperatures. The solid‐state, direct‐current conductivity was also enhanced by the incorporation of MWCNTs. The dispersion level of the MWCNTs was investigated with scanning electron microscopy. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
6.
The polypentapeptide of elastin, poly(GVGVP) has shown remarkable properties and have great potential for biomedical applications. To explore its applications further, the miscibility behaviors of poly(vinyl alcohol) (PVA)/poly(GVGVP) blends have been explored in a very broad composition range. The miscibility behaviors of these blends have been investigated in both solution and solid state using various analytical techniques, including ultrasonic velocity, density, refractive index (RI) and viscosity techniques at 25 °C. The results confirmed the miscibility of the blend up to 40% of the polypeptide. This was further supported by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44624. 相似文献
7.
Gursewak Singh Navleen Kaur Haripada Bhunia Pramod K. Bajpai Uttam K. Mandal 《应用聚合物科学杂志》2012,124(3):1993-1998
In this study, the degradability of linear low‐density polyethylene (LLDPE) and poly(L ‐lactic acid) (PLLA) blend films under controlled composting conditions was investigated according to modified ASTM D 5338 (2003). Differential scanning calorimetry, X‐ray diffraction, and Fourier transform infrared spectroscopy were used to determine the thermal and morphological properties of the plastic films. LLDPE 80 (80 wt % LLDPE and 20 wt % PLLA) degraded faster than grafted low‐density polyethylene–maleic anhydride (M‐g‐L) 80/4 (80 wt % LLDPE, 20 wt % PLLA, and 4 phr compatibilizer) and pure LLDPE (LLDPE 100). The mechanical properties and weight changes were determined after composting. The tensile strength of LLDPE 100, LLDPE 80, and M‐g‐L 80/4 decreased by 20, 54, and 35%, respectively. The films, as a result of degradation, exhibited a decrease in their mass. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
8.
Blends of poly(ethylene oxide) (PEO) with softwood kraft lignin (SKL) were prepared by thermal blending. The miscibility behavior and hydrogen bonding of the blends were investigated by differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The experimental results indicate that PEO was miscible with SKL, as shown by the existence of a single glass‐transition temperature over the entire composition range by DSC. In addition, a negative polymer–polymer interaction energy density was calculated on the basis of the melting point depression of PEO. The formation of strong intermolecular hydrogen bonding was detected by FTIR analysis. A comparison of the results obtained for the SKL/PEO blend system with those previously observed for a hardwood kraft lignin/PEO system revealed the existence of stronger hydrogen bonding within the SKL/PEO blends but weaker overall intermolecular interactions between components; this suggested that more than just hydrogen bonding was involved in the determination of the blend behavior in the kraft lignin/PEO blends. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1437–1444, 2005 相似文献
9.
In this research, a new thermal curing system, with two‐stage curing characteristics, has been designed. And the reaction behaviors of two different curing processes have been systematically studied. The non‐isothermal differential scanning calorimetry (DSC) test is used to discuss the curing reaction of two stages curing, and the data obtained from the curves are used to calculate the kinetic parameters. Kissinger‐Akahira‐Sunose (KAS) method is applied to determine activation energy (Ea) and investigate it as the change of conversion (α). Málek method is used to unravel the curing reaction mechanism. The results indicate that the curing behaviors of two different curing stages can be implemented successfully, and curing behavior is accorded with ?esták‐Berggren mode. The non‐isothermal DSC and Fourier transform infrared spectroscopy test results reveal that two different curing stages can be implemented successfully. Furthermore, the double x fitting method is used to determine the pre‐exponential factor (A), reaction order (m, n), and establish the kinetic equation. The fitting results between experiment curves and simulative curves prove that the kinetic equation can commendably describe the two different curing reaction processes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40711. 相似文献
10.
Polypropylene matrix composites reinforced with single‐walled carbon nanotubes (SWNTs) were produced with different nanotube concentrations. The characterization of these new materials was performed by differential scanning calorimetry and Raman and Fourier transform infrared spectroscopy to obtain information on the matrix–nanotube interaction, on the crystallization kinetics of polypropylene, and especially on the macrostructure and organization of the nanotubes in the composite. On the one hand, the results confirmed the expected nucleant effect of nanotubes on the crystallization of polypropylene, but on the other hand, this effect was not linearly dependent on the SWNT content: there was a saturation of the nucleant effect at low nanotube concentrations. Raman spectroscopy was successfully applied to demonstrating that in the composite films, the crystallization kinetics were strongly affected by the distance between the nanotube bundles as a result of a different intercalation of the polymer. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 708–713, 2003 相似文献
11.
V. F. Shumsky Y. Lipatov I. Getmanchuk A. Usenko P. Cassagnau G. Boiteux F. Melis J.‐M. Lucas 《应用聚合物科学杂志》2006,102(3):2700-2707
Blends of an ethylene/vinyl acetate copolymer (EVA) and polyisobutylene of various compositions were prepared by mechanical mixing at a temperature above the melting point of EVA (TmEVA) but below the upper critical solution temperature of 170°C for given blends. The rheological properties of the components and blends were studied in the region of small‐amplitude oscillating deformation at temperatures above and below TmEVA in the frequency range of 0.01–100 rad/s. At temperatures lower than TmEVA, the rheological properties were determined by the existence of the yield stress. With diminishing frequency, the viscosity increased, and the plateau in the relaxation spectrum at low frequencies broadened. The morphology of the blends depended on the conditions of sample heating. The introduction of a finely dispersed filler into the blends led to an anomalous drop in the viscosity. The morphology of the systems that arose by mechanical blending of the molten components was the important factor in the rheological behavior. The observed effects were examined in the framework of the concept of structural networks formed in melts by nonmelted crystallites of EVA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2700–2707, 2006 相似文献
12.
In the last few decades, polymer blends with good miscibility and conductivity have been the focus of study for material scientists. Here, polymer blends of Poly(methyl methacrylate) (PMMA) and Cellulose acetate (CA) of varying blend compositions have been prepared by solution casting method and their miscibility, water uptake, ion exchange capacity (IEC) proton conductivity, and dielectric properties have been studied. Dimethyl formamide (DMF) was used as solvent. Fourier transform infrared spectra (FTIR) and Differential scanning calorimetry (DSC) measurements have been used to analyze the miscibility of the blends. Up to 50/50 PMMA/CA, water uptake showed an increasing trend and for other compositions the value decreased. Ion exchange capacity and conductivity of the blends decreased with increase in PMMA content of the blends. The variations in the blend properties have been attributed to the presence of specific interactions and exchangeable groups in the blend system. The proton conductivity of the blends is in the order of 10?3 S cm?1. Impedance analysis of the blends indicated the absence of any relaxation phenomenon in the blend system. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3074–3081, 2013 相似文献
13.
Nanosized Fe(OH)2 was synthesized by a coprecipitation method. Peaks between 500 and 1250 cm?1 in Fourier transform infrared (FTIR) spectroscopy confirmed the presence of metal hydroxide stretching. X‐ray diffraction showed the suppressed crystalline system of Fe(OH)2/aniline (ANI) due to the presence of a higher weight percentage of the dispersing agent, ANI. Thermogravimetric analysis implied that 75.5 wt % of residue remained up to 800°C. High resolution transmission electron microscope (HRTEM) analysis of Fe(OH)2/ANI revealed that its size ranged from 10 to 50 nm with a rodlike morphology. Scanning electron microscopy implied that pristine Fe(OH)2 had a nanotriangular platelet morphology, and a higher weight percentage of dispersing agent intercalated with Fe(OH)2 had a spheroid with an agglomerated structure. The (UV–visible) spectrum implied the presence of Fe2+ ions at 326 nm and the existence of an amino group intercalated with Fe(OH)2 showed a sharp peak at 195 nm, the intensity of which increased with increasing intercalated dispersing agent weight percentage. Photoluminescence showed that ANI‐intercalated Fe(OH)2 showed a lesser intensity than the pristine Fe(OH)2. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
14.
The different transitions and reactions involved in the thermal processing of ternary ethylene vinyl acetate (EVA)–polyethylene (PE)–azodicarbonamide (ADC) mixtures with different concentrations of PE and ADC, which was used as a foaming agent, were studied by means of differential scanning calorimetry. The effect of the concentration of PE in the ternary samples was practically linear, which showed an increase in the fusion heat of the PE and the PE domains of the EVA. On the contrary, the mechanism of the thermal decomposition of ADC that the ternary mixtures contained was strongly dependent on its concentration in the sample, which showed clear deviations from linearity. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
15.
Mohammad Razavi‐Nouri Ghasem Naderi Ali Parvin Mir Hamid Reza Ghoreishy 《应用聚合物科学杂志》2011,121(3):1365-1371
A thermoplastic elastomer (TPE) nanocomposite based on polypropylene (PP), acrylonitrile–butadiene rubber (NBR), and a nanoclay (NC) was prepared in a laboratory mixer with a 54/40/6 weight ratio. The effects of NC on the thermal properties, crystalline structure, and phase morphology of the TPE nanocomposite were studied in this work. The results obtained from the nonisothermal crystallization of PP, PP/NBR, and PP/NBR/NC, which was carried out with differential scanning calorimetry, revealed that the overall rate of crystallization of PP decreased with the addition of NBR to PP and increased when NC was incorporated into the nanocomposite. In addition, the crystallite size distribution was more uniform for the PP phase crystallized in the nanocomposite versus the PP itself. Also, although the PP in the reference blend (PP/NBR) crystallized only in the α form, the crystalline structure of the PP incorporated into the nanocomposite was a mixture of α‐ and γ‐crystalline forms. The effects of NC on the phase morphology of PP/NBR blends prepared with three different cooling methods (quenching in liquid nitrogen, cooling between two metal plates at room temperature, and molding at a high temperature in a hot press) were studied. For the samples quenched in liquid nitrogen or cooled between metal plates, a particulate–cocontinuous morphology formed. However, for the samples prepared under a hot press, a laminar‐like morphology was observed. In all three cases, a similar particulate–cocontinuous morphology formed for the reference blend, but the rubber inclusions were always smaller than those of the TPE nanocomposite. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
16.
Aravind Mannarswamy Stuart H. Munson‐McGee Robert Steiner Charles L. Johnson 《应用聚合物科学杂志》2010,117(4):2133-2139
Optimal designs have been constructed for differential scanning calorimetry (DSC) experiments conducted under constant‐heating‐rate conditions for materials that are a priori assumed to follow nth‐order kinetics. Two different operating scenarios are considered, including single‐scan and multiscan DSC experiments for eight different kinetic parameter combinations representing a range of typical polymeric curing reactions. The resulting designs are studied to determine which kinetic model parameters are influential in determining the optimal design. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
17.
The objective of this work was to study the miscibility and phase‐separation temperatures of poly(styrene‐co‐maleic anhydride) (SMA)/poly(vinyl methyl ether) (PVME) and SMA/poly(methyl methacrylate) (PMMA) blends with differential scanning calorimetry and small‐angle light scattering techniques. We focused on the effect of SMA partial imidization with aniline on the miscibility and phase‐separation temperatures of these blends. The SMA imidization reaction led to a partially imidized styrene N‐phenyl succinimide copolymer (SMI) with a degree of conversion of 49% and a decomposition temperature higher than that of SMA by about 20°C. We observed that both SMI/PVME and SMI/PMMA blends had lower critical solution temperature behavior. The imidization of SMA increased the phase‐separation temperature of the SMA/PVME blend and decreased that of the SMA/PMMA blend. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
18.
Priyanka Choudhary Smita Mohanty Sanjay K. Nayak Lakshmi Unnikrishnan 《应用聚合物科学杂志》2011,121(6):3223-3237
Poly(L lactide) (PLA) was blended with polypropylene (PP) at various ratios (PLA:PP = 90 : 10, 80 : 20, 70 : 30, and 50 : 50) with a melt‐blending technique in an attempt to improve the melt processability of PLA. Maleic anhydride (MAH)‐grafted PP and glycidyl methacrylate were used as the reactive compatibilizers to induce miscibility in the blend. The PLA/PP blend at a blend ratio of 90 : 10, exhibited optimum mechanical performance. Differential scanning calorimetry and thermogravimetric analysis studies showed that the PLA/PP/MAH‐g‐PP blend had the maximum thermal stability with the support of the heat deflection temperature values. Furthermore, dynamic mechanical analysis findings revealed an increase in the glass‐transition temperature and storage modulus with the addition of MAH‐g‐PP compatibilizer. The interaction between the compatibilizers and constituent polymers was confirmed from Fourier transform infrared spectra, and scanning electron microscopy of impact‐fractured samples showed that the soft PP phase was dispersed within the PLA matrix, and a decrease in the domain size of the dispersed phase was observed with the incorporation of MAH‐g‐PP, which acted as a compatibilizer to improve the compatibility between PLA and PP. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
19.
Two novel structures of adamantane‐modified benzoxazines were synthesized from 4‐(1‐adamantyl)‐phenol through the incorporation of adamantane as a pendant group into the polybenzoxazine backbone. Both 1H‐NMR and Fourier transform infrared spectra were used to characterize these structures. The rigid structure of the adamantane tended to hinder the chain mobility (boat anchor effect) and substantially enhanced the thermal properties, including the glass‐transition temperature and decomposition temperature, especially for poly(6‐adamantyl‐3‐methyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine). In the poly(6‐adamantyl‐3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine) system, however, the opposite result for the glass‐transition temperature was observed and it was interpreted as lower crosslinking density. The phenyl group was bulkier than the methyl group, and the movement of the molecular chain was hindered between bridging points during the curing process; this resulted in a lower crosslinking density and a lower glass‐transition temperature than those of poly(6‐adamantyl‐3‐methyl‐3,4‐dihydro‐2H‐1,3‐benzoxazine). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 932–940, 2004 相似文献
20.
Studies of the nonisothermal crystallization kinetics of poly(ethylene terephthalate) nucleated with anhydrous sodium acetate were carried out. The chemical nucleating effect was investigated and confirmed with Fourier transform infrared and intrinsic viscosity measurements. The Avrami, Ozawa, and Liu models were used to describe the crystallization process. The rates of crystallization, which initially increased, decreased at higher loadings of the additive. The activation energy, calculated with Kissinger's method, was lower for nucleated samples. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献