首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This work aims to develop halogen‐free poly(1,4‐butylene terephthalate) (PBT) composites with enhanced flame retardancy using ecofriendly flame retardants, aluminum hypophosphite (AHP) and melamine derivatives (melamine polyphosphate and melamine cyanurate). Microscale combustion calorimetry and thermal gravimetric analysis/infrared spectrometry (TG‐IR) technique were used to investigate the potential fire hazards of these PBT composites. For the PBT composites with the incorporation of AHP and melamine derivatives, the heat release capacity (HRC) which is an indicator of a material fire hazard was significantly reduced, and the intensities of a variety of combustible or toxic gases detected by TG‐IR technique were remarkably decreased. Moreover, a loading of 20 wt % flame retardant mixture fulfilled the PBT composites high limited oxygen index (LOI) and V‐0 classification in UL 94 testing. An intumescent flame retarded mechanism was speculated in this work, because numerous bubble‐like char residues were found on the surface of the samples containing flame retardant mixture after LOI testing. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Synergistic charring effect was observed between aluminum diethlyphosphinate (AlPi) and 4,4‐bishydroxydeoxybenzoin‐polyphosphonate (BHDB‐PPN) in the poly(butylene terephthalate) composite. By combining them together, robust UL 94 V0 rating was achieved at 0.8 mm thickness for poly(butylene terephthalate)/AlPi/BHDB‐PPN composite which exhibited better mechanical properties than the samples without BHDB‐PPN. The thermal degradation behavior of BHDB‐PPN was investigated by analyzing its evolution and residues under different temperatures. It was found that the radical termination reaction of formed benzyl group may play a critical role in the high charring capacity of BHDB‐PPN. Part of the volatile diethlyphosphinate fragments reacted with the degradation intermediates from BHDB‐PPN to form big chain structure for further carbonization was a possible reason for the synergistic charring effect between AlPi and BHDB‐PPN. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45537.  相似文献   

3.
A series of polymeric flame retardants (PFRs) containing phosphorus‐nitrogen‐bromide were synthesized from spirocyclic pentaerythritol bisphosphorate disphosphoryl chloride (SPDPC), 2‐methoxyl‐4,6‐dichloro‐1,3,5‐triazine (MDCT), and tetrabromobisphenol A (TBBPA). The influence of monomer ratio on their thermal stability was investigated by adjusting the proportion of SPDPC/MDCT (mol/mol) from 80/20 to 20/80. The flammability properties of the PFRs blended with ABS were evaluated using LOI and UL‐94 vertical test. The structures of the flame retardants were characterized by means of Fourier transform infrared spectra (FTIR) and proton nuclear magnetic resonance spectroscopy (1H‐NMR). The results show that the initial temperature of decomposition is 274°C and with 35% charring residue at 500°C when the ratio of SPDPC/MDCT is 50/50. V‐0 ratings in the UL‐94 vertical test were achieved at 20–30% loading of PFRs, when LOI values reached at least 26.9%. The flame retardancy is strongly dependent on the ratio of P, N, and Br. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Blends of two biodegradable and semicrystalline polymers, poly(L ‐lactic acid) (PLLA) and poly(butylene succinate‐co‐adipate) (PBSA), were prepared by solvent casting in different compositions. The miscibility, morphology, and thermal behavior of the blends were investigated using differential scanning calorimetry and optical microscopy. PLLA was found to be immiscible with PBSA as evidenced by two independent glass transitions and biphasic melt. Nonisothermal crystallization measurements showed that fractionated crystallization behavior occurred when PBSA was dispersed as droplets, evidenced by multiple crystallization peaks at different supercooling levels. Crystallization and morphology of the blends were also investigated through two‐step isothermal crystallization. For blends where PLLA was the major component, different content of PBSA did not make a significant difference in the crystallization mechanism and rate of PLLA. For blends where PBSA was the major component, the crystallization rate of PBSA decreased with increasing PLLA content, while the crystallization mechanism did not change. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

5.
With the aim of up‐grading the material properties of post‐consumer PET, making them suitable for extrusion of thermoformable thick sheets, a series of polyepoxy chain extenders have been comparatively evaluated as melt viscosity modifiers for a toughened compatibilized blend containing up to 80 wt % of bottle‐grade post‐consumer recycled poly(ethylene terephtalate) (r‐PET). Combinations of a commercial modifier with pentaerythritol were also successfully employed to cause simultaneous hyperbranching and controlled chain scission, thereby modifying the melt rheology of the material without excessively increasing the molecular weight, as highlighted by common technological melt viscosity measurements such as online torque and off‐line melt flow rate (MFR). Since the high melt fluidity of PET plays a critical role on its flame resistance, the combined effect of chain extenders and halogen‐free phosphorated additives on the fire resistance of the modified toughened blends was also investigated. Preliminary results indicate that the chemical reactions among polymer and additives must be taken into careful account to prevent unfavorable effects on the ultimate melt rheology and mechanical properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40881.  相似文献   

6.
A series of poly(ether ester) thermoplastic elastomers (TPEEs) are synthesized by a one‐pot, two‐step method: (1) transesterification of dimethyl‐2,6‐naphthalenedicarboxylate with 1,4‐butanediol (BDO) as chain extender (CE), followed by (2) low‐pressure melt polycondensation with poly(tetramethylene ether glycol) as a soft segment in the presence of Ti(OBu)4 as a catalyst. In order to design phosphorous‐containing flame‐retardant TPEEs, hydroxyl‐terminated isobutylbis(hydroxypropyl)phosphine oxide (IHPO) is integrated into the polymer backbone as the second CE, modulating the IHPO content up to 30% with respect to BDO. The resultant TPEEs are systematically characterized using various spectral, thermal, and mechanical analyses. An increase in phosphorus content in the polymer backbone enhances the flame retardancy of TPEE, adapting them as promising halogen‐free self‐extinguishing thermoplastic elastomers without losing their elastomeric properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45478.  相似文献   

7.
Composites of poly(butylene terephthalate) (PBT), 2,4,6‐tris(2′,4′,6′‐tribromophenoxy)‐1,3,5‐triazine (TTA), and glass fibers were prepared, and the effect of TTA on the properties and morphologies of the composites was studied. The results showed that the addition of a suitable amount of TTA could improve the flame retardancy of PBT composites reinforced with glass fibers, and good resistance to TTA emigration from the inside of the composites onto their surfaces was obtained. Fourier transform infrared spectroscopy analyses of PBT, TTA, and their blend suggested that there might be no chemical bonds formed on the interfaces between PBT and TTA in the composite; a thermogravimetric study revealed that the weight loss of the PBT/TTA composite was very limited in the temperature range of 25–300°C, and scanning electron microscopy images of the blend demonstrated that the TTA particle sizes and their distribution in the PBT matrix remained thermally stable when the system was heated at 130°C for 3 h. This suggested good compatibility of TTA with PBT. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1291–1296, 2006  相似文献   

8.
A phosphorous flame retardant (DOPO‐MAH) was synthesized through the reaction between of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) and maleic anhydride (MAH) and confirmed by FT‐IR, 1H NMR, and 31P NMR techniques. The obtained flame retardant was then melt blended with poly(butylene terephthalate) (PBT) to prepare flame retardant PBT/DOPO‐MAH composites. The composites were characterized by LOI, UL‐94, and mechanical tests as well as scanning electron microscopy, thermogravimetric analysis, and differential scanning calorimetry analysis. On adding 20 wt % DOPO‐MAH, LOI increased from 20.9 to 25.7 and the UL‐94 V‐0 rating was achieved, whereas the tensile and flexural properties were notably improved. Torque‐time profile during the melt blending and intrinsic viscosity of the composite indicated that DOPO‐MAH acted as both flame retardant and chain extender for the PBT matrix. The results showed that PBT/DOPO‐MAH composite is a promising material for its good comprehensive properties. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1301‐1307, 2013  相似文献   

9.
Poly(ethylene terephthalate) (PET) chips were coated by trisilanolphenyl–polyhedral oligomeric silsesquioxane (T‐POSS) and hexakis (para‐allyloxyphenoxy) cyclotriphosphazene (PACP) using the predispersed solution method, and PET/PACP/T‐POSS hybrids were further prepared by the melt‐blending method. The influence of T‐POSS on the rheological, thermal, and mechanical properties and flame retardancy of PET/PACP composites were discussed. The results suggest that T‐POSS was homogeneously dispersed in the PET matrix, which reduced the negative effects on polymer rheology and mechanical properties. For the PET/4%PACP/1%T‐POSS sample, the tensile strength at break and Tg increased from 29.67 MPa and 81.7 °C (PET/5%PACP) to 34.8 MPa and 85.8 °C, respectively, but the sample also self‐extinguished within 2 s, and the heat release capacity was reduced by 27.9% in comparison with that of neat PET.© 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45912.  相似文献   

10.
Miscibility and crystallization behaviors of biodegradable poly(butylene succinate‐co‐butylene terephthalate) (PBST)/poly(hydroxyl ether biphenyl A) (phenoxy) blends were investigated with various techniques in this work. PBST and phenoxy are completely miscible as evidenced by the single composition‐dependent glass transition temperature over the entire blend compositions. Nonisothermal melt crystallization peak temperature is higher in neat PBST than in the blends at a given cooling rate. Isothermal melt crystallization kinetics of neat and blended PBST was studied and analyzed by the Avrami equation. The overall crystallization rate of PBST decreases with increasing crystallization temperature and the phenoxy content in the PBST/phenoxy blends; however, the crystallization mechanism of PBST does not change. Moreover, blending with phenoxy does not modify the crystal structure but reduces the crystallinity degree of PBST in the PBST/phenoxy blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Two types of microcapsule flame retardants are prepared by coating ammonium polyphosphate (APP) and aluminum diethylphosphinate (ADP) with epoxy resin (EP) as the shell via in situ polymerization, and blended with high density polyethylene (HDPE)/graphene nanoplatelets (GNPs) composites to obtain flame‐retardant HDPE materials. Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), and water contact angle results confirm the formation of core–shell structures of EP@APP and EP@ADP. The limiting oxygen index (LOI), vertical burning test (UL‐94), cone calorimetry, and Raman spectroscopy are employed to characterize the HDPE/GNPs composites filled with EP@APP and EP@ADP core–shell materials. A UL94 V‐0 level and LOI of 34% is achieved, and the two flame retardants incorporated in the HDPE/GNPs composite at 20 wt % in total play a synergistic effect in the flame retardancy of the composite at a mass ratio of EP@ADP:EP@APP = 2:1. According to the cone‐calorimetric data, the compounding composites present much lower peak heat release rate (300 kW/m2) and total heat release (99.4 MJ/m2) than those of pure HDPE. Raman spectroscopic analysis of the composites after combustion reveals that the degree of graphitization of the residual char can reach 2.31, indicating the remarkable flame retarding property of the composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46662.  相似文献   

12.
The objective of this study was to develop an environmentally friendly fire‐retardant polypropylene (PP) with significantly improved fire‐retardancy performance with a novel flame‐retardant (FR) system. The system was composed of ammonium polyphosphate (APP), melamine (MEL), and novel phosphorus‐based FRs. Because of the synergistic FR effects among the three FRs, the FR PP composites achieved a V‐0 classification, and the limiting oxygen index reached as high as 36.5%. In the cone calorimeter test, both the peak heat‐release rate (pHRR) and total heat release (THR) of the FR PP composites were remarkably reduced by the incorporation of the novel FR system. The FR mechanism of the MEL–APP–FR–PP composites was investigated through thermogravimetric analysis and char residue characterization, and the results reveal that the addition of MEL–APP–FRs promoted the formation of stable intumescent char layers. This led to the reduction of pHRR and THR and resulted in the improvement of the fire retardancy. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45962.  相似文献   

13.
Two different approaches to the creation of phosphorus‐containing soybean‐oil copolymers were investigated. First, two phosphorus‐containing styrene (ST) derivatives, diphenyl styryl phosphine oxide and dimethyl‐p‐vinylbenzylphosphonate (STP2), where tested as comonomers in the cationic copolymerization of soybean oil (SOY), ST, and divinylbenzene (DVB), to obtain heterogeneous systems in all cases. To overcome this drawback, the cross‐metathesis reaction of methyl 10‐undecenoate and STP2 was carried out to link the phosphorus moiety to the vegetable‐oil derivative. This second approach permitted the synthesis of a new reactive phosphorus‐containing plant‐oil derivative, which was incorporated into the soybean oil, ST, and DVB system. The cationic copolymerization was investigated, and the structure, thermal stability, and mechanical and flame‐retardant properties of the resulting copolymers were studied. Thermosets with moderate glass‐transition temperatures were obtained; this showed that the cross‐metathesis reaction is a convenient way to produce oil‐compatible monomers able to undergo homogeneous polymerization reactions. The resulting thermosets with 1% phosphorus had limiting oxygen index values about 24.0; this indicated an improvement in the fire‐retardant properties of the soybean‐oil‐based copolymers. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
The miscibility and melting behavior of binary crystalline blends of poly(ethylene terephthalate) (PET)/poly(trimethylene terephthalate) (PTT) have been investigated with differential scanning calorimetry and scanning electron microscope. The blends exhibit a single composition‐dependent glass transition temperature (Tg) and the measured Tg fit well with the predicted Tg value by the Fox equation and Gordon‐Taylor equation. In addition to that, a single composition‐dependent cold crystallization temperature (Tcc) value can be observed and it decreases nearly linearly with the low Tg component, PTT, which can also be taken as a valid supportive evidence for miscibility. The SEM graphs showed complete homogeneity in the fractured surfaces of the quenched PET/PTT blends, which provided morphology evidence of a total miscibility of PET/PTT blend in amorphous state at all compositions. The polymer–polymer interaction parameter, χ12, calculated from equilibrium melting temperature depression of the PET component was ?0.1634, revealing miscibility of PET/PTT blends in the melting state. The melting crystallization temperature (Tmc) of the blends decreased with an increase of the minor component and the 50/50 sample showed the lowest Tmc value, which is also related to its miscible nature in the melting state. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Flame retardancy for thermoplastics is a challenging task where chemists and engineers work together to find solutions to improve the burning behavior without strongly influencing other key properties of the material. In this work, the halogen‐free additives aluminum diethylphosphinate (AlPi‐Et) and a mixture of aluminum phosphinate (AlPi) and resorcinol‐bis(di‐2,6‐xylyl phosphate) (AlPi‐H + RXP) are employed in neat and reinforced poly(butylene terephthalate) (PBT), and the morphology, mechanical performance, rheological behavior, and flammability of these materials are compared. Both additives show submicron dimensions but differ in terms of particle and agglomerate sizes und shapes. The overall mechanical performance of the PBT flame‐retarded with AlPi‐Et is lower than that with AlPi‐H‐RXP, due to the presence of larger agglomerates. Moreover, the flow behavior of the AlPi‐Et/PBT materials is dramatically changed as the larger rod‐like primary particles build a percolation threshold. In terms of flammability, both additives perform similar in the UL 94 test and under forced‐flaming combustion. Nevertheless, AlPi‐Et performs better than AlPi‐H + RXP in the LOI test. The concentration required to achieve acceptable flame retardancy ranges above 15 wt %. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
A novel flame retardant (FR) containing phosphorus and 4‐tert‐butylcalix[4]arene was synthesized and characterized. The FR combined with ammonium polyphosphate (APP) was then incorporated into epoxy resins (EPs) at different ratios. The flame retardancy, thermal stability, and smoke‐releasing properties were investigated. The limiting oxygen index was as high as 30.8% when the mass fraction ratio of the FR to APP was 1:2. The improved FR effect have been due to the combined FR effects between the FR and APP. The char residue content at 800 °C under a nitrogen atmosphere increased notably from 8.22% to 17.6% when the FR APP was incorporated into EP; this indicated an improvement in the thermooxidation resistance. From the cone test, we found that both the total heat‐release and peak heat‐release rate of the FR resins were reduced. Compared to the resins containing no FRs, the smoke‐production rate and total smoke‐production results indicate that the FR resins also exhibited good smoke‐suppression properties. Generally, the stable char layer of the FR APP–EP not only effectively prevented the release of combustion gases but also hindered the propagation of oxygen and heat into the interior substrate. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45105.  相似文献   

17.
Commercial grade poly(ethylene terephthalate), (PET, intrinsic viscosity = 0.80 dL/g) and poly(butylene terephthalate), (PBT, intrinsic viscosity = 1.00 dL/g) were melt blended over the entire composition range using a counterrotating twin‐screw extruder. The mechanical, thermal, electrical, and rheological properties of the blends were studied. All of the blends showed higher impact properties than that of PET or PBT. The 50:50 blend composition exhibited the highest impact value. Other mechanical properties also showed similar trends for blends of this composition. The addition of PBT increased the processability of PET. Differential scanning calorimetry data showed the presence of both phases. For all blends, only a single glass‐transition temperature was observed. The melting characteristics of one phase were influenced by the presence of the other. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 75–82, 2005  相似文献   

18.
In this work, a bio‐based flame retardant, casein, was incorporated into poly(lactic acid) (PLA) matrix by melt compounding in order to improve the fire resistance and sustain the biodegradable character of PLA simultaneously. The fire performance of PLA composites was evaluated by limiting oxygen index, UL‐94 vertical burning, and cone calorimeter tests, respectively. The results indicated that the introduction of 20% casein increased the limiting oxygen index value of PLA composites from 20.0% to 32.2%, upgraded the UL‐94 rating from no rating to V‐0, and decreased the peak heat release rate from 779 to 639 kW/m2. The decomposition products of PLA composites were analyzed by Fourier transform infrared, and the morphology of the char after combustion was observed by scanning electron microscopy. It was suggested that casein took effects in both gas phase by releasing non‐flammable gases (such as NH3 and H2O) and condensed phase by the formation of protective char layers. However, the presence of casein in PLA induced an unavoidable deterioration in the mechanical performance. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46599.  相似文献   

19.
In this study, melt blends of poly(butylene terephthalate) (PBT) with epoxy resin were characterized by dynamic mechanical analysis, differential scanning calorimetry, tensile testing, Fourier transform infrared spectroscopy, and wide‐angle X‐ray diffraction. The results indicate that the presence of epoxy resin influenced either the mechanical properties of the PBT/epoxy blends or the crystallization of PBT. The epoxy resin was completely miscible with the PBT matrix. This was beneficial to the improvement of the impact performance of the PBT/epoxy blends. The modification of the PBT/epoxy blends were achieved at epoxy resin contents from 1 to 7%. The maximum increase of the notched Izod impact strength (≈ 20%) of the PBT/epoxy blends was obtained at 1 wt % epoxy resin content. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
We investigated the reactive melt blending of poly(ethylene terephthalate) (PET) and poly(trimethylene terephthalate) (PTT) in terms of the thermal properties and structural features of the resultant materials. Our main objectives were (1) to investigate the effects of the processing conditions on the nonisothermal melt crystallization and subsequent melting behavior of the blends and (2) to assess the effects of the blending time on the structural characteristics of the transreaction products with a fixed composition. The melting parameters (e.g., the melting temperature, melting enthalpy, and crystallization temperature) decreased with the mixing time; the crystallization behavior was strongly affected by the composition and blending time. Moreover, a significant role was played by the final temperature of the heating treatment; this meant that interchange reactions occurred during blending and continued during thermal analysis. The wide‐angle X‐ray diffraction patterns obtained under moderate blending conditions showed the presence of crystalline peaks of PET and PTT; however, the profiles became flatter after blending. This effect was more and more evident as the mixing time increased. Transesterification reactions between the polyesters due to longer blending times with an intermediate composition led to a new copolymer material characterized by its own diffraction profile and a reduced melting temperature. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号