首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Poly(vinylidene fluoride) (PVDF) nanofibers were fabricated via electrospinning with an investigation of various ratios of binary solvents at different temperatures. The amount of acetone influenced the morphology. Scanning electron microscopy showed a PVDF membrane composed of smooth and unblemished fibers without beads and dark spots with small diameters of 201 ± 54 nm at a dimethylformamide‐to‐acetone ratio of 4:6. The temperature of pre‐thermal treatment from room temperature to 120 °C was investigated to promote the β crystalline phase in electrospun PVDF nanofibers. The result was characterized using Fourier transform infrared (FTIR) spectroscopy and X‐ray diffraction (XRD). PVDF solution prepared at 80 °C was used to increase the β crystalline phase of the electrospun PVDF nanofibers due to the transformation of α to β phase occurring during the spinning process and also bead‐free PVDF nanofibers were obtained. Differential scanning calorimetry revealed crystallization behavior corresponding with that determined using FTIR spectroscopy and XRD. Therefore, the solvent proportion and pretreatment temperature were observed to affect ultrafine nanofiber and crystalline structure of PVDF, respectively. © 2020 Society of Chemical Industry  相似文献   

2.
The characteristics of poly(vinylidene fluoride) (PVDF) nanofibers, prepared by applying the electrospinning technique from N,N‐dimethylformamide/acetone mixtures, were studied by varying the experimental conditions. The nanofiber morphology was assessed by scanning electron microscopy, while wide angle X‐ray diffraction and infrared spectroscopy were performed to study the crystallinity. The influence of the electrospinning conditions, such as kind of solvent mixture, polymer concentration, voltage tension, airflow and humidity, on nanofiber morphology was studied. In particular, the latter parameter, generally not considered, was found to modify the electrospun mat structure in a relevant way. Generally, the above technique turns out to be capable of strongly affecting the polymorphism of the polymer, namely β phase formation was higher in the electrospun mats compared with cast films, which displayed a non‐polar α crystal phase. As far as the influence of the electrospinning conditions on PVDF crystal structure is concerned, modification of the experimental parameters did not affect the α/β ratio. Nevertheless, comparing the behavior of two commercial PVDF samples with similar molecular masses, our results show that the polymer which forms a higher content of β phase in its cast films allowed electrospun mats characterized by almost complete formation of β phase to be obtained. Copyright © 2012 Society of Chemical Industry  相似文献   

3.
Electrospinning processing can be applied to fabricate fibrous polymer mats composed of fibers whose diameters range from several microns down to 100 nm or less. In this article, we describe how electrospinning was used to produce zein nanofiber mats and combined with crosslinking to improve the mechanical properties of the as‐spun mats. Aqueous ethanol solutions of zein were electrospun, and nanoparticles, nanofiber mats, or ribbonlike nanofiber mats were obtained. The effects of the electrospinning solvent and zein concentration on the morphology of the as‐spun nanofiber mats were investigated by scanning electron microscopy. The results showed that the morphologies of the electrospun products exhibited a zein‐dependent concentration. Optimizing conditions for zein produced nanofibers with a diameter of about 500 nm with fewer beads or ribbonlike nanofibers with a diameter of approximately 1–6 μm. Zein nanofiber mats were crosslinked by hexamethylene diisocyanate (HDI). The tensile strength of the crosslinked electrospun zein nanofiber mats was increased significantly. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103:380–385, 2007  相似文献   

4.
Poly(vinyl alcohol) (PVA)/waterborne polyurethane (WBPU) nanofiber mats were prepared using electrospinning method with aqueous solutions. Scanning electron microscopy (SEM), X‐ray diffraction (XRD), thermal gravimetric analyzer (TGA), and tensile strength testing machine (ZWICK) were used to characterize the morphology and properties of the PVA/WBPU nanofiber mats. The results showed that the morphologies of PVA/WBPU nanofiber mats changed with the total solid concentration and the mass ratio of PVA/WBPU in the spinning solution. The tensile strength and thermal stability of the fibers could be significantly affected by the WBPU contents. The electrospun PVA/WBPU membranes showed higher water uptake, which would have potential applications in wound dressings. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Poly(vinylidene fluoride) (PVDF) nanofibrous mats containing silver nanoparticles were prepared by electrospinning. The diameter of the nanofibers ranged between 100 and 300 nm, as revealed by scanning electron microscopy. The silver nanoparticles were dispersed, but some aggregation was observed with transmission electron microscopy. The content of silver nanoparticles incorporated into the PVDF nanofibrous mats was determined by inductively coupled plasma and X‐ray photoelectron spectroscopy. The antibacterial activities of the samples were evaluated with the colony‐counting method against Staphylococcus aureus (Gram‐positive) and Klebsiella pneumoniae (Gram‐negative) bacteria. The results indicate that the PVDF nanofibrous mats containing silver nanoparticles showed good antibacterial activity compared to the PVDF nanofiber control. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Conductive nanofibers of poly(vinylidene fluoride) (PVDF) filled with polyaniline (PANi)‐coated multi‐wall carbon nanotubes (MWCNTs) were fabricated using the electrospinning technique. PANi is an intrinsically conductive polymer. The addition of PANi‐coated MWCNTs to PVDF created short conductive strands on the surface of the nanofibers, facilitating the formation of a conductive network in the transverse direction of the nanofibers. Piezoelectricity along with electric conductivity makes these PVDF nanofibers promising for applications such as sensors and actuators. Electrospun PVDF nanofiber mats had higher piezoelectricity than melt‐processed samples produced using traditional polymer processing techniques, such as compression molding. Spectroscopic imaging techniques were employed to study the effects of the filler and processing conditions on the nanofiber structure. X‐ray diffraction, Fourier transform infrared spectroscopy and differential scanning calorimetry results indicated a large increase in the β‐phase crystals of the PVDF nanofibers. This higher content of β‐phase crystals enhanced the piezoelectricity of the nanofibers. © 2015 Society of Chemical Industry  相似文献   

7.
Recently, piezoelectric nanogenerators have received great interest as they can convert waste mechanical and radiative energy to electricity and can be used in self-energy generating systems and sensor technologies. In this study, electrospun poly(vinylidene fluoride) (PVDF) nanofiber-based piezoelectric nanogenerators with reduced graphene oxide (rGO), polyaniline (PANI), and PANI-functionalized rGO (rGOPANI) have been developed. Two different types of nanofiber mats were produced: First, rGO- and rGOPANI-doped PVDF nanofiber mats and second, rGO, PANI and rGOPANI-spray-coated PVDF nanofiber mats that have worked as nanogenerators' electrodes. Then, characterizations of samples were performed in terms of piezoelectricity, Fourier transform infrared (FTIR) spectrophotometric, X-ray diffractions (XRD), and scanning electron microscopy analyses. FTIR and XRD results confirmed that piezoelectric β-crystalline phase of PVDF occurred after the electrospinning process. Besides, maximum output voltages were obtained as 7.84 and 10.60 V for rGO-doped PVDF and rGOPANI-coated PVDF nanofiber mats, respectively. As a result, the doped nanofibers were found to be more successful due to the higher device accuracy in sensor technologies compared with spray-coated samples. However, spray-coating method proved to be more suitable technique for the production of nanogenerators on an industrial scale in terms of fast and large-scale applicability. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48517.  相似文献   

8.
The crystallization of poly(vinylidene fluoride) (PVDF) was observed after the poly(methyl methacrylate) (PMMA) component was extracted from the PVDF/PMMA (50/50) composite nanofiber fabricated by electrospray deposition, even though the original composite showed a completely amorphous pattern in the wide‐angle X‐ray diffraction. The content of the β‐crystal form in the crystalline region depended on the PVDF/PMMA composite ratios and the type of solvents used for the extraction of the PMMA component, e.g., chloroform and toluene. Thus, the content of the β‐crystal form can be controlled by selecting the original PVDF/PMMA composition and the solvent used to extract the PMMA component. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
Poly(vinyl alcohol) (PVA)/montmorillonite clay (MMT) nanofiber mats have been fabricated by the electrospinning technique. The PVA/MMT nanofiber mats were characterized by X‐ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and mechanical measurements. The study showed that the introduction of MMT results in improvement in tensile strength, and thermal stability of the PVA matrix. XRD patterns and SEM micrographs suggest the coexistence of exfoliated MMT layers over the studied MMT contents. FTIR revealed that there might be possible interaction occurred between the MMT clay and PVA matrix. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
Poly(vinyl alcohol) and sodium alginate blends with and without the metal chelate, bis(2,4,4‐trimethylpentyl)phosphinic acid were prepared in various compositions and fabricated to stable nanofibers and films to evaluate their efficacy for metals adsorption and desorption. Surface morphology of the nanofibers was characterized by scanning electron microscopy. The solution properties and variation in content of sodium alginate in the feed mixture have influenced morphology of nanofibers. However, influence of bis(2,4,4‐trimethylpentyl)phosphinic acid was insignificant. The films and nanofibers were characterized using Fourier transform infrared spectroscopy, differential scanning calorimetry, thermo gravimetric analysis, and X‐ray diffraction to understand compatibility between polymers, thermal stability, decomposition temperature, and variations in crystallinity. Metal adsorption studies for nanofiber mats comprising bis(2,4,4‐trimethylpentyl)phosphinic acid were demonstrated using copper (II), cobalt(II), and nickel(II) salts. The nanofibers adsorbed more copper (363 mg/g) when compared with films (105 mg/g). Nanofiber mats immobilized with bis(2,4,4‐trimethylpentyl)phosphinic acid adsorbed copper in greater magnitude (497 mg/g) than nanofiber mats without bis(2,4,4‐trimethylpentyl)phosphinic acid (363 mg/g). However, adsorption of cobalt and nickel was very low to be detected. The metal adsorption and desorption studies were also confirmed by energy dispersive X‐ray spectroscopy. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

11.
This research focuses on fabricating a one-step nano-generator based on electrospun nanofibrous materials for wearable electronics textiles applications. A nanofibrous structure from Poly (vinylidene fluoride), PVDF, was produced using electrospinning technique. Performances of these structures were evaluated by using X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM). Piezoelectric properties of fabricated composites also were evaluated on a self-made system as a function of frequency. Results showed that not only electrospinning process can effectively improve piezoelectric properties of nanofiber mats by changing the crystalline structure (e.g. create the β-phase) compared to PVDF film samples, but also the fibrous structure of these materials interestingly can be used in the wearable electronic textiles. By using a novel approach to fabricate the nanofiber layer along with incorporating the electrodes within the structure of the device, the electrical output was improved as high as 1 volt. These results imply promising applications for various wearable self-powered electrical devices and systems.  相似文献   

12.
A nanofiber membrane composed of poly(ε‐caprolactone) (PCL), poly(vinyl pyrrolidone) (PVP), and silver nanoparticles was prepared via electrospinning technique. The morphology and structure of the PCL/PVP/Ag nanofibers composite were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), X‐ray diffraction (XRD), and X‐ray photoelectron spectroscopy (XPS). The SEM images showed that various composites of PCL/PVP/Ag could be electrospun to yield continuous and uniform nanofibers. FTIR spectra indicated that the molecular interactions between PCL and PVP are weak. The hydrophilicity, mechanical property, and swelling behavior of the as‐spun composites can be manipulated by altering the blend ratio of PCL/PVP. XRD patterns and XPS spectra showed that the Ag nanoparticles were dispersed in the PCL/PVP nanofiber composites; and the Ag nanoparticles endowed the PCL/PVP/Ag composite with antibacterial activities. The obtained PCL/PVP/Ag nanofiber composites with the morphology similar to that of native extracellular matrix have the potential to create a moist environment and to kill bacteria, which make it possible to be used for wound dressing application. POLYM. COMPOS., 37:2847–2854, 2016. © 2015 Society of Plastics Engineers  相似文献   

13.
Poly(vinylidene fluoride) (PVDF) was electrospun into ultrafine fibrous membranes from its solutions in a mixture of N,N‐dimethylformamide and acetone (9:1, v/v). The electrospun membranes were subsequently treated by continuous hot‐press at elevated temperatures up to 155°C. Changes of morphology, crystallinity, porosity, liquid absorption, and mechanical properties of the membranes after hot‐press were investigated. Results of scanning electron microscopy showed that there were no significant changes in fibrous membrane morphology when the hot‐press temperature varied from room temperature to 130°C, but larger pores were formed because of fibers melting and bonding under higher temperatures. Analyses of X‐ray diffraction and differential scanning calorimeter exhibited that the crystalline form of PVDF could transfer from β‐type to α‐type during hot‐press at temperatures higher than 65°C. Tensile tests suggested that the mechanical properties of the electrospun PVDF membranes were remarkably enhanced from 25 to 130°C, whereas the porosity and the liquid absorption decreased. The hot‐press at 130°C was optimal for the electrospun PVDF membranes. The continuous hot‐press post‐treatment could be a feasible method to produce electrospun membranes, not limited to PVDF, with suitable mechanical properties as well as good porosity and liquid absorption for their applications in high‐quality filtrations or battery separators. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

14.
As a piezoelectric polymer, poly (vinylidene fluoride) (PVDF) is attractive in energy conversion applications between electrical and mechanical forms because of its low cost, high flexibility, and biocompatibility. The piezoelectricity of electrospun PVDF polymer is due to changes in the crystalline structure (e.g., creating the β‐phase) during the electrospinning process. This research focuses on two approaches for investigation of β Phase formation: (1) addition of LiCl in different concentrations (0.001, 0.00133, 0.002, 0.004 wt%) as inorganic salt to the polymer solution, (2) increasing tension along the fiber axis by increasing the collector drum speed during the aligning process. Performances of these structures were evaluated by using X‐ray diffraction (XRD), Fourier Transform Infrared (FTIR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). A one‐step nano‐generator and cost‐effective package based on electrospun nanofibers was presented to measure output voltages as a performance factor. Results show that the addition of LiCl leads to β Phase formation in the crystalline structure, decreasing fiber diameter to 65 nm, and increment in the work of rupture and piezoelectric output. Moreover, the results show that increasing collector drum speed causes the alignment of β‐crystallites along the fiber axis and subsequently no considerable effect on the formation of β‐phases and output voltage. POLYM. ENG. SCI., 56:61–70, 2016. © 2015 Society of Plastics Engineers  相似文献   

15.
The miscibility, crystallization kinetics and crystalline morphology of a new system of poly(vinylidene fluoride)/poly(?‐caprolactone)‐block‐poly(dimethylsiloxane)‐block‐poly(?‐caprolactone) (PVDF/PCL‐b‐PDMS‐b‐PCL) triblock copolymer were investigated by a variety of techniques. The miscibility and phase behaviour of PVDF/PCL‐b‐PDMS‐b‐PCL were studied by determination of the melting point temperature, crystallization kinetics and Fourier transform infrared (FTIR) mapping. Chemical imaging was used as a new technique to characterize the interaction of polymer blends in crystalline morphology. The results demonstrate the existence of characteristic peaks of both PVDF and PCL in the chosen crystalline area. The crystalline structures of PVDF were affected by the PCL‐b‐PDMS‐b‐PCL triblock copolymer and facilitate the formation of the β polymorph which was illustrated by FTIR analysis. The β crystal phase fraction increases significantly on increasing the composition of the PCL‐b‐PDMS‐b‐PCL triblock copolymer. In addition, confined crystallization of PCL within PVDF inter‐lamellar and/or inter‐fibrillar regions was confirmed through polarizing optical microscopy, wide‐angle X‐ray diffraction and small‐angle X‐ray scattering analysis. © 2019 Society of Chemical Industry  相似文献   

16.
Antimicrobial polyvinylidene fluoride (PVDF) membrane modified by dodecyltrimethyl ammonium bromide (DTAB) has been electrospun using simple one‐step technology, where the modifying agent DTAB is dissolved in spinning solution. X‐ray photoelectron spectroscopy and electrokinetic analysis confirm reliably the presence of DTAB on the nanofibers surfaces; electrokinetic analysis shows the changes of zeta potential due to modification by DTAB. X‐ray diffraction shows that electrospinning converts the part of α phase (≈40%) present in PVDF powder into β phase with all trans (TTT) zigzag chains conformation in PVDF electrospun membrane. Surface modification does not affect the phase composition of PVDF nanofibers, just only leads to lower crystallinity (smaller size of crystallites) in PVDF nanofibers. DTAB causes the curling of fibers and their aggregation, what completely changed the membrane structure. DTAB‐modified membrane exhibits antibacterial properties against Staphylococcus aureus subsp. Aureus. Concentration of 0.5 wt% DTAB in spinning solution causes partial inhibition of bacterial growth only, while 1.0 wt% concentration leads to complete inhibition.  相似文献   

17.
In this study, free radical copolymerization of acrylonitrile (AN)–vinyl acetate (VAc) was performed for five different feed ratio of VAc (wt %) by using ammonium persulfate (APS) in the aqueous medium. The effect of VAc content on the spectrophotometric and thermal properties of AN–VAc copolymers was investigated by Fourier Transform Infrared–Attenuated Total Reflectance spectrophotometer (FTIR–ATR), differential scanning calorimeter (DSC), and thermal gravimetric analyzer (TGA). Thermal stability of homopolymer of AN is improved after being copolymerized. The electrospun P(AN‐co‐VAc) nanofibers were fabricated and the effect of VAc content on the morphologic properties of nanofibers was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The viscosity of the solution had a significant effect on P(AN‐co‐VAc) electrospinning and the nanofiber morphology. The average diameters of P(AN‐co‐VAc) nanofibers decreased 3.4 times with increasing feed ratio of VAc wt %. The P(AN‐co‐VAc) electrospun nanofiber mats, with the feed ratio of 30 wt % VAc, can be used as a nanofiber membrane in filtration and as a carbon nanofiber precursor for energy storage applications due to high surface to volume ratio, high thermal stability, homogeneous, and thinner nanofiber distribution. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Electrospinning technique was employed to prepare neat PVDF, nanoclay-PVDF and carbon nanotube (MWCNT)-PVDF nanocomposites, and nanoclay-carbon nanotube-PVDF hybrid nanocomposites. A mixture of dimethyl formamide/acetone (60/40) was used to fluidize the polymer and nanofillers. Electrospinning process was conducted under optimized conditions. Maximum modification was achieved at 0.15 wt% nanofiller. Rheological measurements on the prepared solutions revealed decreased material functions in the presence of nanoclay, whereas the rheological properties of MWCNT-PVDF solution did not show any significant reduction compared with those of neat PVDF solution. The behaviors of the hybrid nanocomposite solutions, though dependent on their composition and their material functions, increased with MWCNT concentration. These differences, together with variations in electrical properties of nanoclay and MWCNT, led to changes in morphology of the fiber during electrospinning process. Under electrospinning conditions designed for neat PVDF solution, mats with beads and with the highest fiber diameter were produced. Meanwhile, incorporation of both nanoclay and MWCNT into the solutions resulted in bead-free fibers with thinner diameter. Fourier transformed infrared spectrophotometry (FTIR) and X-ray diffractometry (XRD) were used to measure the β-phase crystalline content in electrospun mats. Complete agreement was found between the FTIR and XRD results. The lowest and highest β-phase contents were obtained for neat PVDF mat and hybrid nanocomposite mat containing 0.1 wt% clay, respectively. The mixing procedure of nanofillers and the PVDF solution was also found to be important. In case of hybrid nanocomposites, more β-crystals were formed when the nanoclay was first mixed in the absence of MWCNT.  相似文献   

19.
N‐(4‐aminophenyl)aniline oxidative polymerization is optimized to produce polyaniline (PANI) free from carcinogenic and/or polluting coproducts. The resulting polymer is electrospun using polymethyl methacrylate (PMMA) as the supporting polymer, with different weight ratios (1:0, 4:1, 3:1, 2:1, 1:1, and 0.5:1 w/w PANI/PMMA). By rinsing with a selective solvent, PMMA is removed while maintaining the fibrous morphology. Ultrathin (65 ± 14 nm) and defect‐free PANI nanofiber mats are obtained for the blend containing a high relative content of PANI (2:1 w/w, namely F2:1). Two different solvents are tested to remove PMMA, namely acetone and isopropanol, the former giving better results, as highlighted by infrared spectroscopy (FTIR). X‐ray diffraction (XRD) demonstrates that the electrospun PANI is amorphous. The thin fiber mats are robust and sterilization both by autoclave and UV irradiation can be carried out. UV irradiation is preferred since no modification of the fibrous morphology is detectable. In vitro biocompatibility of the electrospun F2:1 fibers has been evaluated with SH‐SY5Y neuronal‐like cells. Indirect cytocompatibility tests show that no cytotoxic leachable is released by the electrospun mats at both short and longer times, while direct cytocompatibility investigations indicate that only F2:1 fibers washed in isopropanol do not reduce cell proliferation rate with respect to controls on tissue culture plates. Globally, these results suggest that the proposed electrospun nanostructures are promising materials for neuronal tissue engineering. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43885.  相似文献   

20.
In this study, nylon‐6 nanofiber mats containing Fe2+ ions were fabricated via electrospinning. The resultant electrospun nylon‐6/FeCl2 nanofiber mats were characterized by SEM, TEM, Fourier transform IR spectroscopy, wide angle XRD and DSC. Unique morphological features, such as spider's‐web‐like morphologies, were observed and became evident with increasing additive Fe2+ ions. The metastable γ form was predominant in the as‐spun nylon‐6 nanofibers. The relative intensity of such γ form gradually decreased with increasing additive Fe2+ ions, indicative of transformation of the crystalline structure in the electrospun nylon‐6/FeCl2 nanofibers due to strong molecular interactions between the nylon‐6 backbone and the additive Fe2+ ions. The effects of additive Fe2+ ions on the mechanical properties of both nonwoven nanofiber mats and single nanofibers were investigated. In particular, Young's modulus of nylon‐6/FeCl2 single nanofibers gradually increased from 1.46 to 5.26 GPa with increasing additive Fe2+ ions. © 2013 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号